Workshop on Humanoid Teleoperation

Kourosh Darvish IIT

Daniele Pucci IIT

Serena Ivaldi INRIA

Eiichi Yoshida AIST

Horizon 2020 European Union funding for Research & Innovation

Why humanoid robot teleoperation

To care for people at home

Which interface for teleoperating?

Telepresence now

Telepresence future

Teleoperation basic: the robots

Teleoperation: some examples

TELESAR II (telexistence system, TachiLab, Tokyo)

SUPVIS-JUSTIN with haptic feedback (DLR)

, iCub with VR omniwalk (IIT)

JAXON2 (Inaba, Tokyo)

Teleoperation in space

Teleoperation

• Objective: develop principles to allow for natural and effective teleoperation of the robot by human(s)

Attributes affect the interaction between human and robots.

- Level and behavior of autonomy
- Nature of information exchange
- Structure of the team
- Adaptation, learning, and training of people and the robot
- Shape of the task

Common metrics

Devote more attention to the core questions of the field:

- Allows the share of knowledge and compare findings
- Analyze in three aspects: human, robot and system
- Identify and discuss metrics throughout the application space

Workshop Organization

Some questions we will try to address today

- What are the factors which determine the proper **autonomy** level of the robot for teleoperation scenarios?
- Does robot need to **predict the human motions** and intentions during teleoperation scenarios?
- How we can provide a **balance between the robot dexterity**, **manoeuvrability**, **and robot stability** while it follows the human commands?
- How we can **map** the human motions to the robot motions in situations which the human and robot dynamics are largely different, e.g., space exploration scenarios?
- How we can design **intuitive interfaces** for human, to increase the performance and effectiveness while providing an immersive teleoperation experience to the human?

Program: morning session 1

Time	Talk
8.45 - 9.00	Welcome & Introduction
9.00 - 9.30	Kourosh Darvish & Serena Ivaldi –
9.30 - 9.50	Yuto Nakanishi (Video) Teleoperation of humanoid robot, space teleoperation challenges and approaches in Gitai
9.50 - 10.10	ANA Avatar XPRIZE The ANA Avatar XPRIZE: Inspiring creators, inventors and futurists to design and construct the future of robotic avatars
10.10 - 10.30	Poster Pitch Presentations
10.30 - 11.00	Coffee break

Program: morning session II

11.00 - 11.30	Enrico Mingo Teleoperation of humanoid robot, in specific WALK-MAN teleoperation challenges, experiences in DARPA robotic challenge
11.30 - 12.00	Yohei Kakiuchi Teleoperation of a humanoid robot with whole-body motion for object manipulation
12.00 - 12.30	Joshua Mehling Challenges and approaches for teleoperation of humanoid robot for space exploration, experiences with Robonaut2
12.30 - 14.00	Lunch Vote this issue to join us for lunch

Program: afternoon session I

14.00 - 14.30	Neal Lii Toward multi-modal space teleoperation: A look back at METERON SUPVIS Justin and what lies ahead
14.30 - 15.00	Joao Ramos Dynamic synchronization of human operator and humanoid robot via bilateral feedback teleoperation
15.00 - 15.30	Jerry Pratt Humanoids avatar for co-exploration of hazardous environments, lessons learned from DARPA Robotics Challenge
15.30 - 16.00	Coffee break

Program: afternoon session II

15.30 - 16.00	Coffee break
16.00 - 16.30	Rafael Cisneros Limon Teleoperated manipulation and locomotion for humanoid robots in partially unknown real environments by using task sequences
16.30 - 17.00	Panel discussion

Join us for the panel discussion!!

Lunch: join us for a quick bite!

Dinner: join us for informal discussion!

- We are recording the workshop presentations!
- Videos will be available on Youtube soon after the workshop
- Check our twitter feeds or the website: <u>https://dic-iit.github.io/WS_teleoepration_humanoids/</u>

Questions for panel discussion

• If you have questions for the panel discussion, notify the organizers during coffee breaks or before the panel

Teleoperation of walking humanoid robot

[1] K. Darvish, Y. Tirupachuri, G. Romualdi, L. Rapetti, D. Ferigo, F. J. A. Chavez, D. Pucci, "Whole-body geometric retargeting for humanoid robots," in Proceedings of 2019 IEEE International Conference on Humanoid Robots (*Humanoids*), Toronto, Canada, October, 2019.
[2] M. Elobaid, Y. Hu, G. Romualdi, S. Dafarra J. Babic, D. Pucci, "Telexistence and teleoperation for walking humanoid robots," in 2019 Proceedings of IntelliSys Conference, London, UK, September 2019. [2]

ISTITUTO ITALIANO DI TECNOLOGIA DYNAMIC INTERACTION CONTROL

Teleoperation of walking humanoid robot

Teleoperation of walking humanoid robot

ISTITUTO ITALIANO DI TECNOLOGIA DYNAMIC INTERACTION CONTROL

Geometric retargeting

Kinematic whole body motion retargeting

Scalability of the geometric retargeting

Synchronization done manually

*The base of the human is not anthropomorphically mapped to the robot models. Hence, the sway of robot models like Nao during dynamic movements

Whole-body balancing retargeting

ISTITUTO ITALIANO DI TECNOLOGIA DYNAMIC INTERACTION CONTROL

Thank you