

Teleoperated manipulation and locomotion for humanoid robots in partially unknown real environments by using task sequences

Rafael Cisneros-Limón

Workshop on Teleoperation of Humanoid Robots IEEE-RAS International Conference on Humanoid Robots 2019

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Outline

- Social demands for humanoid robots
- Goal and approaches
- Motivation
- Teleoperation system
- Effective teleoperated manipulation
- Recent improvements
- Challenges
- Conclusions

Social demands for humanoid robots

Disaster response and decommissioning

• Dangerous for humans

DAIST

- Tools and facilities thought for humans
- Unknown state and unstructured
- Unreliable communication
 - High level of autonomy required

Large-scale assembly / manufacturing

- Airplanes, boats, buildings, houses...
- Very repetitive, somehow precise tasks
- Unstructured, not completely unknown (CAD)
- Scarce (or null) use of robots
 - Necessity to move inside of the product

Goal and approaches

• Develop a practical robot to perform the required task(s) and succeed! But how?

Manual teleoperation

Super Cockpit for HRP-1S

- Not practical, many DOF!
- Expensive, large space
- Highly dependent on skills of the operator

Truly practical solution!

Artificial Intelligence (AI)

- Human out of the loop
- Only low-level tasks
- Difficult to combine them to achieve high-level task

Motivation DARPA Robotics Challenge (DRC) Finals

Motivation DARPA Robotics Challenge (DRC) Finals

• Team AIST-NEDO

Members: HRG (7), JRL (3), Kawada Industries (2)

HRP-2 & (2015) Improved HRP-2 towards disaster response tasks

		HRP-2 &	
Dimensions	Height	1,710 [mm]	
	Width	629 [mm]	
	Depth	355 [mm]	
Weight including batteries		65 [kg]	
D.O.F.	0.0.F.		
	Head	2 D.O.F.	
	Arm	2 Arms \times 7 D.O.F.	
	Hand	2 Hands × 1 D.O.F.	
	Waist	2 D.O.F.	
	Leg	2 Legs × 6 D.O.F.	

Teleoperation system Objective

- Practical in disaster response
 - Semi-autonomous behavior
 - Flexibility
 - Low-bandwidth
 - Low-cost availability
- Competitive in DRC
 - Parallel development
 - Simulation

Teleoperation system Overview

Teleoperation Interface

Choreonoid (<u>www.choreonoid.org/en/</u>)

[Nakaoka_SII2012]

- Integrated robotics GUI environment
- Allows users to add **plug-ins**
- Robot control (RT-Middleware)
- Dynamics simulation

Teleoperation Interface

• Teleoperation **plug-in**

[Nakaoka_Humanoids2015]

- Visualizations
- Operational markers
- Task sequencer

Real Robot

Simulation

Teleoperation interface Basic components

• Visualizations

[Nakaoka_Humanoids2015]

3D model of the robot

Camera Images

Point cloud

Measurement marker

Walk destination marker

Body part marker

Manipulation marker

Measurement marker

- Calculate span of the head pitch
- Only information of region of interest

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Walk Destination Marker

 Footstep planner with collision avoidance

[Nakaoka_SII2014]

- 3D Occupancy Grid Map (OGM) used to represent obstacles
 - OctoMap

[Hornung_AuRo2013]

Interface

[Nakaoka_Humanoids2015]

Simulation

Walk Destination Marker

- Height Field (HF)
 - Plane segmentation applied to the point cloud
 - Clusters with similar inclination
- Balance control
 - Divergent Component of Motion (DCM)-based
 - PID of the DCM error
 - Modifies desired ZMP

[Morisawa_SII2014]

Interface

[Nakaoka_Humanoids2015]

Simulation

Body Part (Hand) Marker

- Reaching pose
 - Prioritized whole-body inverse kinematics

[Kanoun_TRO2011]

- Collision avoidance
 - Small sphere to each point of the point cloud
 - Body parts approximated by spheres and capped cylinders
 - Resulting sequence shown by "ghostly" key postures

[Kanehiro_IROS2012]

Interface

[Nakaoka_Humanoids2015]

Manipulation (Object) Marker

- 1. Object representation and recognition
- Automatic alignment
 - Iterative Closest Point (ICP) algorithm
 - Point Cloud Library (PCL)

Interface

[Nakaoka_Humanoids2015]

Manipulation (Object) Marker

- 2. Generation of hand trajectories
- Manipulation
 - One hand or both
 - Planned sequence shown by "ghostly" key postures

Interface

[Nakaoka_Humanoids2015]

Task Sequencer

- Interface for simplifying and automating task operations
 - Reduce burden on • the operator
- Characteristics:
 - Stepwise execution • (or "auto")
 - Manual intervention •
 - On-the-fly updating •

[Nakaoka_Humanoids2015], [Nakaoka_ARSO2017]

Communication System

Effective Teleoperated Manipulation

Problems

AIST

- Partially unknown environment
- Teleoperated with limited communication
- Noisy sensing (inaccurate point cloud)
- Controller error (steady-state error)
- Race against time
- Effective and practical general strategy
 - Fast semi-automatic identification
 - Visual information for fine refinement
 - Force sensors to correct identification
 - Task-based motion parametrization

Effective Teleoperated Manipulation Problems

Race against time

• A huge bottleneck to improve the speed is actually the time spent by the operator

TABLE II: Teams that completed the plug task.

Team	Place	Task time	Eff. time	Insert. adjust.
KAIST	1	11:01	2:18	14
IHMC Robotics	2	6:31	2:32	8
Tartan Rescue	3	18:33	3:21	17
NIMBRO Rescue	4	8:16	2:29	16
WPI-CMU	7	5:07	1:42	7
AIST-NEDO	10	16:34	1:34	3

[Cisneros_Humanoids2015]

TABLE II: Time analysis of the Debris Task.

Concept	Tot. time	Туре	Time p/operation [s]			
	[min:s]		μ	σ	min	max
Robot motion	6:15.0	Measurement	5.8	1.3	4.1	8.0
		Walking	6.6	2.8	3.1	11.9
		Upper-Body	3.4	1.9	1.0	8.6
Computer	1:59.4	Alignment	4.0	4.5	0.4	16.7
processes		Others	2.3	0.9	0.2	5.3
Used by operator	6:06.2	Identification	5.1	1.1	3.5	7.5
		Walk dest.	14.3	6.5	8.8	26.1
		Others	3.1	2.2	0.4	9.7

[Cisneros_Humanoids2016]

- Fast semi-automatic identification
 - User input that requires no precision → fast
 - Initial guess using a priori knowledge
 - Automatic refinement
 - ICP

Plug task Socket-plug identification

[Cisneros_AR2016]

Debris task Debris identification

[Cisneros_Humanoids2016]

- Visual information for fine refinement
 - Pre-reaching
 - Use camera information only for fine refinement

Plug task Check alignment

Plug task Check relative pose of the plug

[Cisneros_AR2016]

- Force sensors to correct identification
 - Stop until touching (sensed force)
 - Separate if required
 - Recalculate task state

Plug task Grasp small plug [Cisneros_AR2016] Debris task Approach until touching [Cisneros_Humanoids2016]

Task-based motion parametrization

- Calculate motion based on current state to perform sub-task automatically
- Reduce burden for operator

Debris task Simple removal

[Cisneros_Humanoids2016]

Debris task Complex removal

Effective Teleoperated Manipulation Examples

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Effective Teleoperated Manipulation Examples

Perception based locomotion system Improved semi-autonomous teleoperated locomotion

- Localization
 - Odometry fusion based on a particle filter
- Environmental memorization
 - Occupancy grid map
 - Collision
 avoidance
 - Height field
 - Landing state
 - Waist height estimation

[Kumagai_IROS2018]

Plaster board installation by *HRP-5P*

- Our newest demo
- The plaster board is 11 kg (not easy to carry)
- We have been working on improving the speed
 - Perception
 - Automating the task
 - Approximately 8 min (still 8 times slower than a human)

https://www.youtube.com/watch?v=ARpd5J5gDMk

Challenges

- More transparent interface
 - Allow to input values
- 3D measurement robust to lightning conditions
 - Noise leading to unexpected collisions
- More advanced recognition techniques [WIP]
 - We can only recognize preloaded objects
- Simulation of more complex environments
 - Discrepancies between simulation and experiment
- Fault recovery
 - Although possible, difficult to overcome unexpected situations

Conclusions

- Our teleoperation system is practical, although it needs improvement
 - Intensively used to develop tasks
- Autonomy
 - Achieved by the task sequencer
 - Depends on the object recognition capability
- Flexibility
 - Combination of task sequencer and interactive manual operations
- Low-bandwidth
 - Small amount of data (except for the images and point cloud)
- Low-cost availability
 - Only PCs, allowing parallel development

Questions?

