
Deep Correspondence Learning for Effective Robotic Teleoperation
using Virtual Reality

Sanket Gaurav1, Zainab Al-Qurashi1, Amey Barapatre1, George Maratos1, Tejas Sarma1 and Brian D. Ziebart1

Abstract— By projecting into a 3-D workspace, robotic tele-
operation using virtual reality allows for a more intuitive
method of control for the operator than using a 2-D view
from the robot’s visual sensors. This paper investigates a setup
that places the teleoperator in a virtual representation of the
robot’s environment and develops a deep learning based ar-
chitecture modeling the correspondence between the operator’s
movements in the virtual space and joint angles for a humanoid
robot using data collected from a series of demonstrations. We
evaluate the correspondence model’s performance in a pick-
and-place teleoperation experiment.

I. INTRODUCTION

Tasks like performing experiments with hazardous sub-
stances or handling dangerous waste [1], [2] are most safely
performed by humanoid robots. However, often these tasks
cannot be completed successfully without human guidance.
Teleoperation is one of the most popular ways used for a
human operator to remotely guide and control humanoid
robots [3], [1], [4], [5], [6], [7], [8], [2]. Traditionally,
a teleoperator remotely watches the robot’s environment
projected on a screen (2-D view) from cameras mounted
on the robot’s head [5], [4] and uses a joystick [6], [7] or
controller [8], [9], [10], [1] to operate the robot.

Depth cameras (e.g., the Microsoft Kinect) have been
employed as the input sensor to control a Baxter robot in
previous work [8], [11], [12], [13], [14], [15]. However, depth
cameras often suffer from sensor noise that can produce
errors and poor translation for robotic teleoperation when
mapping from a tracked teleoperator skeleton to robotic joint
positions. Additionally, having only the 2-D view of the
robot’s workspace often makes it difficult for the operator
to precisely control the robot within its environment.

In contrast, recent advances in virtual reality technologies
provide an opportunity to address this difficulty. Virtual real-
ity is popular for creating virtual environments of any room
or workspace [16], [17]. Virtual reality systems like the HTC
Vive typically incorporate two controllers held by an operator
that can track the human wrist with very high accuracy and
allow the operator to realistically manipulate objects in the
virtual environment. Recently, robotic teleoperation has been
performed using 3D sensors like the HTC Vive and Oculus
Rift [18], [19], [17], [16], [20], [21].

1 Sanket Gaurav, Zainab Al-Qurashi, Amey Barapatre, George Maratos,
Tejas Sarma and Brian D. Ziebart are with the Department of Com-
puter Science, University of Illinois at Chicago, 851 S. Morgan St.
(M/C 152) Chicago, IL 60607 {sgaura2, zalqur2, abarap2,
gmarat2, tsarma2, bziebart}@uic.edu,

Fig. 1. (a) Visualization of the Baxter robot’s workspace captured from a
depth camera (Microsoft Kinect) and displayed on a virtual reality headset
(HTC Vive); (b) demonstrator holding HTC Vive controller slowly moves his
hand from neutral position; (c) trainer moves robot hand manually to follow
human trajectory; and (d) demonstrator and trainer with Baxter reaching the
same configuration.

The teleoperation correspondence problem of mapping
from teleoperator poses or controls to robot poses is a crucial
problem for enabling robotic teleoperation using a virtual re-
ality system. Existing methods use linear coordinate transfer
from a virtual reality frame of reference to a robot’s frame
of reference and then perform inverse kinematics to move
a robot’s arm [18], [19], [17], [16], [20]. This translation
mechanism can be slow and erroneous due to multiple joint
configuration solutions being provided by inverse kinematics
for a single point.

In this paper, we propose a machine learning approach
for estimating an appropriate non-linear correspondence for
robotic teleoperation from human pose. We consider tele-
operating the Baxter robot using a Microsoft Kinect depth
camera for perceiving the robot’s workspace and an HTC
Vive virtual reality system for visualizing the workspace and
providing 3-D control, as shown in Figure 1. First, we collect
correspondence positions of human end-effectors and Baxter



joint angles by asking a demonstrator holding an HTC Vive
controller to move his or her hand while an operator moves a
Baxter arm in synchronization with the human demonstrator
(Figure 1). Second, we explore different non-linear machine
learning regression models as baseline correspondence mod-
els. Next, we explore deep learning architectures to learn a
non-linear correspondence model for HTC Vive controllers
to Baxter Robot joints. We show that our proposed deep
correspondence model performs significantly better than lin-
ear and non-linear regression baselines and helps to enable
more effective robotic teleoperation using virtual reality. To
demonstrate the effectiveness of our proposed model, we
conduct a simple real-life experiment: picking up a box from
the table and placing it at another location. Our proposed
deep network enables the teleoperator to perform the task
faster and more effectively than the baseline methods.

The paper is organized as follows: we first provide related
work on robotic teleoperation using virtual reality. Then, we
describe in detail our deep correspondence architecture for
robotic teleoperation. Next, we describe the experiments we
conducted to compare our correspondence learning approach
with baseline methods and discuss the results. Lastly, we
conclude the paper and propose future work.

II. BACKGROUND AND RELATED WORK

A. Correspondence Learning in Virtual Reality

Virtual reality (VR) can provide a teleoperator with a
first-person perspective from a robot’s viewpoint [17]. This
enables high-quality demonstrations for robotic manipulation
to be collected [22]. Fritsche et al. [17] use the Oculus
Rift and Microsoft Kinect camera as teleoperation input
and iCub as their humanoid robot. Their correspondence
(transfer of human embodiment to the robot embodiment)
is accomplished via Kinect camera skeleton tracking. The
virtual reality setup is only used to give the first-person
perspective for performing the task. As mentioned in the
previous section, the Kinect camera can produce erroneous
translations, preventing effective teleoperation. In this paper,
we directly learn controls from human end-effector to robot
embodiment via a deep learning approach.

Previous work uses consumer-grade virtual reality head-
sets (HTC Vive) supported by hand tracking hardware that
can be used to naturally teleoperate robots to perform com-
plex tasks with some delay [18], [16], [20]. Zhang et al. [18]
teach the robot via demonstrations collected in virtual reality.
These prior works [18], [16], [20] use linear coordinate
transfer from virtual reality frame of reference to the robot
frame of reference for correspondence learning. Then, they
use inverse kinematics to find robot joint angles to move the
arm. Unfortunately, inverse kinematics can provide different
joint configurations for one end-effector of a robot arm.
This may lead to an undesirable joint setting that produces
irregular arm movements and ultimately sometimes fails to
accomplish a task. Also, the whole process is complicated
and time-consuming. We use a linear regression baseline
method to emulate these prior work for comparison.

B. Baxter Robot

The Baxter robot is built by Rethink Robotics. It has a
torso mounted on a movable pedestal and two arms on the
left and right sides of the robot [23]. Each arm has seven
degrees of freedom (DOF), i.e., seven joint angles:

Rjoints = [s0, s1, e0, e1, w0, w1, s2]. (1)

Forward kinematics1 provides the end-effector:

Rend-effector = [xt, yt, zt, xr, yr, zr, wr], (2)

where the first three are translation points describing the
position of Baxter’s arm end-effector and the last four are
Quaternion angles describing the rotational position.

C. Deep Learning Architecture

Deep neural networks been developed to address pre-
diction tasks for which more conventional computation ap-
proaches have proven ineffective [24], [25]. They are attrac-
tive for computing the inverse kinematics and dynamics of
robots because they can be trained for this purpose without
explicit programming [26] and can represent complex non-
linear relationships. The basic operation carried out at a
single neuron is represented as:

ai = f i(wiai−1 + bi), (3)

where ai is the output of layer i, f i() is the activation
function of layer i, wi is the weight matrix between layer
i and layer i-1 and bi is the bias of layer i. Several
algorithms have been developed to train a neural network,
including back propagation (with momentum) and Levenberg
Marquaidt algorithms [27] [28]. We use deep networks for
our correspondence model in this paper.

D. Loss Function

The loss or evaluation functions used to evaluate our
correspondence learning models are:

1) Mean Squared Error: The Mean Squared Error (MSE)
is calculated by computing the squared difference between
actual value (Y) and predicted value (Ŷ ) and averaging over
total number of values,

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
. (4)

We employ this measure to train our deep network model
and evaluate the performance of its resulting predictions.

2) Cosine Similarity: Cosine similarity measures the simi-
larity between two non-zero vectors of an inner product space
based on the cosine of the angle between them:

cos(θ) =
AB

‖A‖‖B‖
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

, (5)

where A and B are vectors. We use cosine similarity to
compute the loss of rotation angles of the end-effector.

1http://sdk.rethinkrobotics.com/wiki/Baxter PyKDL#baxter kinematics.py



Fig. 2. Training of the deep neural network to learn the correspondence between the Baxter robot joint angles and the human poses where input 14
represents the position and rotation data of HTC Vive controller placed in two respective hand of the human demonstrator and output 7 represents the
seven joint angles of one of the Baxter robot’s arm.

III. APPROACH

In this section, we first describe the visualization of the
Microsoft Kinect depth data in our virtual reality system.
Then, we explain the underlying problem of non-linearity
in the correspondence from the HTC Vive controller to the
Baxter joint angles. Lastly, we propose in detail our main
contribution: a deep correspondence learning architecture.

A. Visualizing Microsoft Kinect depth data in Virtual Reality

We first develop a visualization of the Kinect depth point
cloud data in the HTC Vive. In the Unity application, we read
the sensor data from a Kinect V1, which has a resolution of
640 x 480 pixels and an 11-bit depth. We use this collected
sensor data to render a mesh in Unity in real-time to create
a point cloud representation. The color information from
the collected data is also maintained in the representation
as it makes objects more discernible. We scale and orient
this point cloud to elicit realism in the visualization using
manually selected parameters. Using the Unity SteamVR
plugin, we integrated the HTC Vive in the application to
view the point cloud in virtual reality. Figure 1(a) shows the
visualization of Baxter’s environment in HTC Vive headset.

The 3-D projection of the robot’s environment provides
teleoperators with a first-person perspective for performing
tasks effectively. However, to accomplish a precise grasping
task, we stream frames from the Baxter wrist camera (2-
D) to the HTC Vive headset. Using the Unity engine, we
display the two wrist cameras by streaming them on the
top corners, as shown in Figure 1(a). This can help the
teleoperator perform a fine-grained task when the robot arm
has reached close to the target location.

B. Robotic Teleoperation using Virtual Reality

The crux of any robotic teleoperation system relies on
the transformation of the human operator’s control inputs
to the robot joint values. For a virtual reality system, this
involves a transfer of embodiment from the human to the
robot that is called a correspondence. We consider the

setting in which the human operator holds an HTC Vive
controller in each hand and wears the HTC Vive headset
to view the Baxter robot’s 3D environment from the first-
person perspective. The HTC Vive data consists of 21 data
points, which comprise positions (translations xt, yt, zt) and
orientations (quaternion angles xr, yr, zr, wr) of the HTC
Vive headset and two HTC Vive controllers.

The two HTC Vive Controller positions indicate the two
human end-effectors. Mapping each position to the seven
joint angles of each Baxter arm is challenging due to non-
linearity. To verify this, we compared a linear model with
polynomial models to regress each one of the joint angles
from the HTC Vive data. The polynomial models outperform
the linear models with the result being statistical significant
with a P-value < 10−16, thus proving that it is indeed a non
linear transformation.

C. Deep Correspondence Learning Architecture

Deep learning has proven to be an effective method for
non-linear function approximation, as explained in Section
II-C. In this paper, we propose a fully connected deep neural
network architecture for our correspondence model, as shown
in Figure 2. The data points from two HTC Vive Controllers
are used as input to the deep network, and the output is
the required seven joint angles of the Baxter Robot arm. We
choose the position of both hands (14 data points) versus only
the controlling hand (seven data points) as input because the
location of the other non-controlling hand helps the model
better situate the relative position of the controlling hand
in the space. We use off-line training for the deep network
as shown in Figure 2. The deep network consists of five
hidden layers (reason explained in Section IV-E) each with
64 neurons. The motivation for deciding neurons in the
hidden layer comes from the statistical difference between
human end-effector position to the Baxter joint angles as
explained in the previous section.

We use a Rectified Linear Unit (ReLU) activation function
(also known as the ramp function) in the input layer, a



Sigmoid response (“S”-shaped curve) in the five hidden
layers, and a linear activation function in the output layer
in order to obtain an output in radians between -1 to 1.

We use the mean squared error (MSE), as the loss function,
1
n

∑n
i=1

(
θip − θid

)2
, where θip is the predicted output joint

angles and θid is the desired joint angles. We use ADAM
[29] as the optimizer to converge quickly to small loss.

IV. EXPERIMENT

A. Hardware Setup

We evaluate our approach using a Baxter robot as our
experimental robot in this paper. We use a Microsoft Kinect
Depth V1 camera with frequency up-to 20Hz mounted to
the head of the Baxter robot to visualize the robot work-
space or environment, and an HTC Vive as our virtual
reality platform, which publishes data with a frequency of
up to 90Hz. The HTC Vive comprises one headset, two
controllers and two base stations for tracking. We use a
Windows machines for running the VR platform that has
an i7 processor, 16 GB of RAM and a GTX 1080 ROG
graphics card. We use ROS (Robot Operating System) to
communicate with the hardware. We also use the Baxter
wrist camera to stream frames to the HTC Vive headset with
a frequency of up to 25Hz.

B. Data Collection

A demonstrator is asked to wear the HTC Vive headset
where he/she can view what Baxter sees as shown in Figure
1-a. Also, the same demonstrator is requested to hold the two
HTC Vive controllers in respective hands. This demonstrator
then moves one of their hands slowly for 3-5 minutes in
random directions. The trainer moves the corresponding arm
of Baxter in synchronization to the demonstrator’s move-
ment, as shown in Figure 1(c). Both the demonstrator and
Baxter’s arm start moving from the same starting position
in space. This data collection process is conducted for both
arms separately. The attached video contains more details of
the training data collection.

There are three components of the HTC Vive used in this
setup, thus 21 data points (7 points for each component) are
transferred over the network to the Robot Operating System
(ROS) environment. These 21 data points from the HTC Vive
and the 7 joint angles of one Baxter arm are recorded at 40
Hz frequency. The collected data are 44,941 data points for
the right hand and 36,155 data points for the left hand from
11 demonstrators.

C. Data Pre-processing

The 11 demonstrators who contributed to data collection
are of different height and arm length. To generalize our
training, we subtract the HTC Vive headset translation posi-
tions (xt, yt, zt) from both HTC Vive controllers’ translation
positions to measure the controllers’ movements relative to
head positions. We randomly withheld one person’s tra-
jectory data for conducting an offline experiment. On the
remaining ten demonstrators’ data, we apply leave-one-out-
cross-validation (LOOCV), i.e., training on nine people’s

data and testing on the tenth. We repeat the process with
each person’s data and take the average.

D. Training of Baselines

We compare our deep correspondence model against a
linear regression approach [13] with either no, polynomial, or
Gaussian expansion of the feature space, and support vector
regression with polynomial or radial basis function (RBF)
kernels. The linear regression method is used as a state-
of-the-art approach to the correspondence learning problem.
We observe that the difference in average Euclidean loss
between linear regression with and without expansion of the
feature space is significant, which is further evidence that
the correspondence task is non-linear in nature. The detailed
result of each baseline is reported in Table I.

E. Training of Deep Learning Models

Motivated by the deficiencies of the linear and non-linear
baseline models, we investigate deep learning models. We
started with a simple network having one hidden layer and
experimented with different activation functions (e.g., hyper-
bolic tangent, Sigmoid, rectified linear) for input and output
layers. For each configuration, we trained until reasonable
validation loss was obtained. We then tested the performance
of the correspondence model on the Baxter robot. The
configuration of rectified linear activation functions for the
input, Sigmoid activation functions for the hidden layers, and
linear activation functions for the output layer gave the best
correspondence. We then tested different numbers of layers
(up to 20 layers) and different numbers of neurons (e.g., in
multiples of 16) in each layer. Using the best of numbers
of layers and number of neurons, we then trained our deep
model to convergence with a difference of training losses for
the last ten epochs of less than 0.0001.

F. Experimental Setup

We conducted two types of experiments to evaluate our
proposed model against the linear and non-linear baselines.

1) Offline Experiment: We first find the difference be-
tween the predicted output and the ground truth for the base-
lines and our deep model. We randomly selected a demon-
strator’s trajectory from the Vive-Baxter correspondence
dataset comprising of 2500 pairs of poses. The corresponding
Baxter’s joint angles of this trajectory (actual/desired value)
are considered as ground truth. The trajectory is passed to the
linear regression correspondence model, the best non-linear
regression model, and the deep network correspondence
model. The respective output joint angles from both models
are recorded. We apply forward kinematics to output Baxter’s
arm joint angles (ground truth, linear regression, non-linear
regression, and deep network) to calculate Baxter’s arm end-
effectors, as shown in Figure 4. The simultaneous movement
of the Baxter robot arm using position control for each of
the four models is demonstrated in an attached video.

We compute the Euclidean distance of Baxter’s end-
effector as provided by the correspondence model with the
ground truth position, as shown in Table II. To measure the



Fig. 3. (a) Pick and place experiment setup in virtual reality, (b) Pick and place experiment setup in reality, (c) Teleoperator reaching the object (white
box) kept at position A in virtual reality, (d) Baxter teleoperated to reach the object (white box) kept at position A, (e) Teleoperator picking up the white
box from position A and moving to position B in virtual reality, (f) Baxter teleoperated to pick up the white box from position A and moving to position
B, (g) Teleoperator placing the box at position B in virtual reality, (h) Baxter teleoperated to place the box at position B.

loss in rotational angle of Baxter’s end-effector, we compute
the cosine similarity between the predicted angles and the
ground truth as shown in Table III. The graph between
predicted end-effector from linear regression vs deep network
vs ground truth is plotted in Figure 4 for three translation
position and four rotational angles respectively.2

2) Real-time Robotic Teleoperation: We use a simple pick
and place task (Figure 3) for our second set of experiments.
A teleoperator is asked to wear the HTC Vive headset where
he/she can view the virtual robot environment, as shown in
Figure 3(a). The teleoperator must move the Baxter arm
from a neutral position to position A where a white box
is placed, grasp the box, and move it from position A to
position B within one minute to be considered successful.
Figures 3(a)-(d) shows the steps conducted by the telopera-
tor in the Virtual reality and Figure 3(e)-(h) demonstrates
corresponding steps performed by Baxter robot using the
proposed deep correspondence model. This task is repeated
by two different teleoperators using linear regression, the best
performing non-linear model (SVR-RBF), and our proposed
deep architecture. There are five trials for each model and
each of them is randomized. Thus, we collected ten samples
for each model to compare success rate.

In real-time, the two HTC Vive controller positions (after
subtracting the HTC Vive headset’s translation position) are

2SVR (RBF) does not provide significant improvement, but clutters the
differences between deep and linear, so we do not include it.

TABLE I
RESULTS (TEST LOSS IN RMSE) OF HTC VIVE CONTROLLER TO

BAXTER CORRESPONDENCE MODELS

Model Left Arm (rad) Right Arm (rad)
Linear Regression 0.6430 0.6699
Kernel Regression (Poly=2) 0.5808 0.5840
Kernel Regression (RBF) 0.5788 0.6196
SVR (Poly=2) 0.6019 0.4863
SVR (Poly=3) 0.5716 0.4758
SVR (RBF) 0.4944 0.4567
Deep Networks 0.0735 0.0659

TABLE II
EUCLIDEAN DISTANCE MEASURE FROM GROUND TRUTH BAXTER’S

END-EFFECTOR POSITION TO PREDICTED BAXTER’S END-EFFECTOR

Model Euclidean Loss (m)
Linear Regression 0.3414
SVR (RBF) 0.2173
Deep Network 0.0267

passed to the trained model. The output (7 Baxter’s arm joint
angles) from the trained correspondence model is then passed
to the Baxter, which moves its arm using position control,
as shown in Figure 3. The average time taken to complete
this task and the success rate of each model is reported in
Table IV. The detailed video on collection of training data
and the pick and place experiment is attached to the paper.



Fig. 4. (a)-(c) Robot end-effector positions (xt, yt, zt) plotted for Ground Truth vs Linear Regression vs Deep Network; (d)-(g) Robot end-effector
rotational angles (xr, yr, zr, wr) plotted for Ground Truth vs Linear Regression vs Deep Network.

TABLE III
COSINE SIMILARITY RESULT

Linear Regression SVR (RBF) Deep Network
xr 0.467 0.628 0.986
yr 0.863 0.876 0.976
zr 0.560 0.785 0.985
wr 0.160 0.428 0.959

TABLE IV
SUCCESS RATE OF PICK & PLACE EXPERIMENT

Success Rate (%) Average Time (sec)
Linear Regression 60 56
SVR (RBF) 70 50
Deep Network 80 41

V. RESULTS AND DISCUSSION

Table I describes the evaluation results of the HTC Vive
controller to Baxter arm joint angle correspondence. As
shown in this table, the MSE for the Baxter joint angles
using the simple linear regression model is very high (i.e.,
a poor correspondence). All of the four non-linear models
performed better than the linear regression model and Sup-
port Vector Regression (SVR) with a Radial Basis Function
(RBF) kernel performed best on the LOOCV test. Thus,
we selected SVR (RBF) as our non-linear baseline model.
The deep network provided substantially lower error, with
a decrease in MSE for the left hand by a factor of 8.74
compared to the linear model and a factor of 6.73 to SVR
(RBF). A similar decrease in MSE can be seen for the right
arm. This demonstrates that our proposed deep architecture
more successfully models the non-linearity in the Vive-
Baxter correspondence data.

Table II shows the Euclidean distance between the robot’s
ground truth end-effector and predicted end-effector posi-
tions. According to Table II, the Euclidean distance loss
between linear regression to ground truth robot’s end-effector

is 0.3414 meters and SVR (RBF) non-linear model to ground
truth is 0.2173 meters. On the other hand, the Euclidean
distance loss between ground truth using the deep network is
only 0.0267 meters. Also, the attached video clearly demon-
strates the difference of performance across the four models
(ground truth, linear regression, non-linear regression, and
deep network) in the real teleoperated arm movement of the
robot. Thus, we have demonstrated significant amounts of
improvement in predicted end-effector by our proposed deep
network compared to linear and non-linear baselines.

Table III shows the cosine similarity between the rotational
angles of the predicted end-effector with the ground truth.
For all four rotational angles, our deep model outperforms
the baseline linear and non-linear regression by a large
margin. Therefore, our deep correspondence model enables
more appropriate control of end effector orientation for fine-
grained manipulation tasks.

The translation positions (xt, yt, zt) and rotational an-
gles (xr, yr, zr, wr) are plotted for Baxter’s end-effector for
ground truth, linear regression and our deep network in
Figure 4. We infer from these seven graphs that the deep
learning model follows the ground truth very closely whereas
linear regression is far away from the ground truth.

Figure 3 shows snapshots of Baxter performing a pick and
place task using the deep correspondence model. We report
the results of this experiment in Table IV. Success rates
and average completions times both improve from the linear
regression model to the non-linear regression model (SVR
with RBF kernel), and from the non-linear model to our
deep learning approach. We find that our approach provides
the highest success rate and lowest average completion time.
Thus, our offline performance successfully transfers to real-
time control.

VI. CONCLUSION AND FUTURE WORK

We have successfully trained correspondence models for
HTC Vive Controller to Baxter’s arms. Our proposed deep



model achieves better results than linear and non-linear
regression baseline models for correspondence-based eval-
uations. In the real-time experiment, our deep network
performed better than baselines model, resulting in faster
completed tasks.

In this paper, we have investigated the problem of corre-
spondence learning for teleoperating the hands of a humanoid
robot. In future work, we plan to extend our approach to
a complete humanoid robot (e.g., Nao) [17], [19], [3], [8],
[1], [10]. This will help better collect training data for
teaching humanoid robots and also perform effective real-
time humanoid robotic teleoperation.

We are planning to evaluate more complex tasks, like
“opening a jar” and tasks mentioned by Whitney et al.
(2018) [20]. To improve the completion time and smooth
teleoperation, we are planning to apply methods for goal
predictions [13], [30] using our trained HTC Vive to Baxter
arm correspondence model. This will help the teleoperated
robot reach the goal in less time and with less distance
traveled compared to previous work [13].

In the future, we would like to improve the visualization
of the robot’s environment in virtual reality using better 3-
D cameras and better visualization techniques. We would
like to incorporate better data collection techniques involving
HTC Vive [22]. Moreover, we are planning to apply other
deep learning techniques such as recurrent neural networks
that accommodate the sequential nature of points in the
trajectory.

ACKNOWLEDGMENT
We thank the demonstrators and trainers who volunteered

for data collection. This research is supported as part of
the Future of Life Institute (futureoflife.org) FLI-RFP-AI1
program, grant #2016-158710 and NSF grant #1652530.

REFERENCES

[1] J. Ramos, A. Wang, W. Ubellacker, J. Mayo, and S. Kim, “A balance
feedback interface for whole-body teleoperation of a humanoid robot
and implementation in the hermes system,” in Proceedings of IEEE-
RAS 15th International Conference on Humanoid Robots, Nov 2015,
pp. 844–850.

[2] J. Vertut, Teleoperation and robotics: applications and technology.
Springer Science & Business Media, 2013, vol. 3.

[3] F. Abi-Farrajl, B. Henze, A. Werner, M. Panzirsch, C. Ott, and M. A.
Roa, “Humanoid teleoperation using task-relevant haptic feedback,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2018, pp. 5010–5017.

[4] Sokho Chang, Jungtae Kim, Insup Kim, Jin Hwan Borm, Chongwon
Lee, and Jong Oh Park, “Kist teleoperation system for humanoid
robot,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)., vol. 2, Oct 1999, pp. 1198–
1203 vol.2.

[5] Sooyong Lee, Dae-Seong Choi, Munsang Kim, Chong-Won Lee, and
Jae-Bok Song, “An unified approach to teleoperation: human and robot
integration,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)., Oct 1998, pp. 261–266 vol.1.

[6] N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie, “Whole
body teleoperation of a humanoid robot - development of a simple
master device using joysticks,” in Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sep.
2002, pp. 2569–2574 vol.3.

[7] M. Stilman, Koichi Nishiwaki, and Satoshi Kagami, “Humanoid
teleoperation for whole body manipulation,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), May
2008, pp. 3175–3180.

[8] I. Almetwally and M. Mallem, “Real-time tele-operation and tele-
walking of humanoid robot nao using kinect depth camera,” in
Proceedings of IEEE International Conference on Networking, Sensing
and Control (ICNSC), April 2013, pp. 463–466.

[9] J. Kofman, Xianghai Wu, T. J. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE
Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1206–1219,
Oct 2005.

[10] I. Rodriguez, A. Astigarraga, E. Jauregi, T. Ruiz, and E. Lazkano,
“Humanizing nao robot teleoperation using ros,” in Proceedings of
IEEE International Conference on Humanoid Robots, Nov 2014, pp.
179–186.

[11] H. B. Suay and S. Chernova, “Humanoid robot control using depth
camera,” in Proceedings of ACM/IEEE International Conference on
Human-Robot Interaction (HRI), March 2011, pp. 401–401.

[12] C. Schultz, “Goal predictive infused robot teleoperation with kinect
depth camera (ms thesis),” 2016.

[13] C. Schultz, S. Gaurav, M. Monfort, L. Zhang, and B. D. Ziebart,
“Goal-predictive robotic teleoperation from noisy sensors,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 5377–5383.

[14] S. Gaurav, “Goal predictive robot teleoperation using predictive filter-
ing and goal change modeling (ms thesis),” 2017.

[15] A. Sripada, H. Asokan, A. Warrier, A. Kapoor, H. Gaur, R. Patel,
and S. R, “Teleoperation of a humanoid robot with motion imitation
and legged locomotion,” in 3rd International Conference on Advanced
Robotics and Mechatronics (ICARM), July 2018, pp. 375–379.

[16] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex,
“Comparing Robot Grasping Teleoperation across Desktop and Virtual
Reality with ROS Reality,” in International Symposium on Robotics
Research, 2017 in press.

[17] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra, “First-person
tele-operation of a humanoid robot,” in Proceedings of IEEE-RAS
International Conference on Humanoid Robots, Nov 2015, pp. 997–
1002.

[18] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel,
“Deep imitation learning for complex manipulation tasks from virtual
reality teleoperation,” arXiv preprint arXiv:1710.04615, 2017.

[19] K. Theofilis, J. Orlosky, Y. Nagai, and K. Kiyokawa, “Panoramic view
reconstruction for stereoscopic teleoperation of a humanoid robot,” in
Proceedings of IEEE International Conference on Humanoid Robots,
Nov 2016, pp. 242–248.

[20] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “ROS Re-
ality: A Virtual Reality Framework Using Consumer-Grade Hardware
for ROS-Enabled Robots,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

[21] B. Xi, S. Wang, X. Ye, Y. Cai, T. Lu, and R. Wang, “A robotic shared
control teleoperation method based on learning from demonstrations,”
International Journal of Advanced Robotic Systems, vol. 16, no. 4, p.
1729881419857428, 2019.

[22] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura,
“Htc vive: Analysis and accuracy improvement,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 2610–2615.

[23] Z. Ju, C. Yang, and H. Ma, “Kinematics modeling and experimental
verification of baxter robot,” in Chinese Control Conference (CCC).
IEEE, 2014, pp. 8518–8523.

[24] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning, ser.
Adaptive computation and machine learning. MIT Press, 2016.

[25] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural
network controller,” IEEE control systems magazine, vol. 8, no. 2, pp.
17–21, 1988.

[26] G. A. Bekey and K. Y. Goldberg, Neural Networks in robotics.
Springer Science & Business Media, 2012, vol. 202.

[27] M. A. Nielsen, Neural networks and deep learning. Determination
Press, 2015.

[28] H. Demuth and M. Beale, “Neural network toolbox,” For Use with
MATLAB. The MathWorks Inc, vol. 2000, 1992.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[30] S. Gaurav and B. Ziebart, “Discriminatively learning inverse optimal
control models for predicting human intentions,” in Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent
Systems, ser. AAMAS ’19, 2019, pp. 1368–1376.


