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 Human-human collaboration 

Can we reach a similar level of seamless collaboration with robots?
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Take into account 
the human in the 
controller (pHRI 
level ++)

Perceive and control 
the contact forces 
(pHRI level 0)

Perceive the human, the environment

Predict what is the intention of 
the human during interaction

Recognize context & action

 Problems in human-robot collaboration

Lyubova et al, AURO 2016
Malaisé et al, ACHI 2018
Dermy et al, Front Rob&AI 2017
Ivaldi et al, IJSR 2016
Romano et al, RAL 2018 + Otani et al, ICRA 2018
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 Transfer paradigm: from humans to humanoids

Can we synthesize whole-body 
collaborative primitives exploiting

human demonstrations?
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 Transfer paradigm: from humans to humanoids

Yes! We can use demonstrations from the human operator.

Tele-operation/retargeting is the whole-body kinesthetic teaching! 



 Human-aware pHRI

• Take into account the entire human dynamics in a multi-task QP 
controller for collaborative manipulations

• Joint level controller for the robot, but capable of reacting to the human

Generating Assistive Humanoid Motions for 
Co-Manipulation Tasks with a Multi-Robot 
Quadratic Program Controller
1Inria Nancy, 2Université de Lorraine, 3CNRS

Kazuya Otani1, Karim Bouyarmane123, Serena Ivaldi1

10:30-13:00, May 23 2018. WeA@H.4ICRA 2018 1125 L

Contributions
• Joint-level controller for human-humanoid 

collaborative manipulation tasks, capable of running 
at fast rates (200Hz) to react to perturbations and 
changes in human motion.

• Allows for interactions which take into account the 
human’s whole-body dynamics (e.g. balance 
assistance)

• Use multi-robot quadratic program controller to 
solve for both optimal robot controls and human 
dynamics reconstruction

Acknowledgements
This work received funding from the European Commission (GA no. 
731540, H2020 project ``An.Dy'').

Author contact info: kazuotani14@gmail.com

Multi-robot quadratic program controller
• Extension of joint-level controller for single humanoid 

robot.
• Centralized control of joint torques and interaction 

forces for multiple “robots”. Any entity with a 
dynamics model can be modeled as a “robot” in the 
multi-robot system. 
minimize

q̈,τ,f

∑

k

wk||g̈k − g̈desk ||2

subject to Mq̈ +N = JT
0 F 0 + (J1 −ΨTJ2)F

− + Sτ

J0q̇ = 0

(J1 −ΨTJ2)q̇ = 0

f ∈ C

torque limits, joint limits, collision avoidance

Individual or combined tasks
(e.g. combined CoM for balance)

Equal and opposite contact forces 
between robots

Non-slipping contacts between robots

Approach
• Incorporate the human as a “robot”, approximated as a 

rigid body model. Ensure that simulated human tracks 
actual human’s motions with high-weight tracking 
objectives in QP.

• Additional QP objectives for robot balance and task-
specific motions.

Motivations
• Most existing controllers/planners for human-robot 

interaction only take into account simplified 
representations of human state (e.g. hand poses, 
external forces).

• Having a full-body dynamics model of the human is 
helpful in human-humanoid collaborative tasks in 
which the robot actively affects the human’s 
motions.

• We design a controller that takes into account 
simultaneously: 

• Robot’s own balance
• Interactions forces with the human
• Human’s dynamics
• End goals of the co-manipulation task

Results
• Experiments in simulation – record a human-human 

collaborative task, with one person wearing motion 
capture suit. The recorded human motion is replayed in 
the simulated environment, for interaction with the 
robot.

• Our controller generates realistic interaction motions 
and forces, with appropriate behaviors (e.g. pulling 
back to assist balance) emerging from simple QP 
objectives.

simulated 
human
model

QP1

robot

QP2

Xsens 
MVN
suit

mirroring 
task

(collaboration)

interaction 
constraints

single QP

cascaded QPs

Interaction forces on the robot

Human collaborator
(to be replaced by robot) Recorded human Simulated humanRobot collaborator

Assumptions
• Goals of human/collaboration are known
• Contact events are detectable
• Human motion can be approximated with a QP 

controller and a rigid body model

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA



 Demonstrating collaborative behaviors

K. Otani, K. Bouyarmane, S. Ivaldi (2018) ICRA
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 Transfer paradigm: from humans to robots

Oculus
Development Kit

Human partner Robot Operator Ground control

operator 
monitor

human 
partner
monitor

robot
monitor
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 Different forms of teleoperation

Operator:
Motion retargeting

Penco et al.  (2018) HUMANOIDS

Ground control:
Teleoperation with 

shared control
Ivaldi et al.  (2016) IJSR
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 Some problems in “human to humanoids”  

1) Human-aware control with demonstrations of complex whole-body 
behaviors for collaboration, which considers the unfeasible  
➟ Teleoperation with robust retargeting that filters commands

2) The teleoperator may do something off the script!   
➟ We need to optimize the controller’s parameters to be robust and 
“generic” so we can execute any teleoperate movement

3) The teleoperated movement may not be optimal for the robot  
➟We need to re-optimize the motion for the robot dynamics 
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 1) teleoperation with a robust retargeting strategy 

How do we retarget
human motions in real-time to enable 

robust teleoperation?

Robot Operator

XSens 
suit

CoM
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Retargeting in a robust way for tele-operation
Penco et al.  (2018) HUMANOIDS

 1) teleoperation with a robust retargeting strategy 
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Fig. 2: Teleoperation pipeline.

torque control allows a more flexible interaction with the
robot, in particular it enables direct physical interaction be-
tween the human and the robot that is teleoperated. However,
in the case of iCub, the absence of joint torque sensing2 and
saturation of force/torque sensors limit the torque control
loop, to the point that velocity control seems more appro-
priate for quasi-static movements. Moreover, the structure of
the torque controller ensures stability for complex motions at
the price of a reduced mimicry and a notable delay3. In this
paper we overcome these limits with a novel framework for
online motion retargeting with a velocity-based QP controller
that we describe in the next section.

III. FROM MOTION CAPTURE TO ROBOT MOTION

A. Motion capture
The first step for a motion retargeting technique is to

track the human pose. Recent developments in human motion
capture allow now high-fidelity and high-frequency tracking
data. Motion-capture is widely used nowadays in various
fields including physiotherapy, surveillance, computer graph-
ics and foremost in the cinema, using external cameras or
wearable sensors. For our experiments we used the Xsens
MVN system [31]. It is a wearable system consisting of 17
IMUs, providing a real-time estimation of the human posture.

Once the data is acquired from the motion capture sys-
tem, it can be mapped to feasible corresponding values for
the robot that are set as references for the multi-task QP
controller (see Fig. 2).

B. QP controller based on stack-of-tasks
We opted for a velocity-based QP controller based on

OpenSoT [32], an open-source library implementing QP
controllers based on the stack-of-tasks [33]. Nowadays, QP
controllers have become widespread thanks to their flexibility
and various formulations have been proposed in the litera-
ture, [34], [12], [35], which take into account joint velocity,
acceleration and torque control as well as contact forces. The
general form of QP-based controllers is:

min
x

|| Ax� b ||2
W

s.t. l  Cx  u (1)

where x are the controlled variables (e.g. joint velocities),
A is the Jacobian task matrix, b is the desired task to perform,

2Joint torques are estimated online with a model-based approach that
exploits the sensor readings from the force/torque sensors distributed on the
robot [30].

3These limitations can be observed in the video of the teleoperation with
the CoDyCo torque controller: https://youtu.be/-ib0n5shuxg

W is a positive definite weight matrix, C is the constraint
matrix and finally l (lower) and u (upper) are constraints.
QP controllers permit to handle various type of constraints
that, depending on the chosen formulation, may include robot
dynamics, friction cones, self-collision avoidance, joint limits
and many more (see for example [35]).

For the teleoperation this kind of controllers is appropriate
since they allow to take into account both Cartesian tasks
(body segment positions) and Joint space tasks while satis-
fying all the robot constraints. Moreover, the tasks can be
specified both in a hard and soft priority fashion.

IV. RETARGETING METHOD

The QP controller allows to define Cartesian tasks and
a postural task together with their subtasks. Since the iCub
body dimension is close to the one of a 5 years old child,
there is a great difference with the size of the human operator
wearing the xSens suit. For this reason, the direct retargeting
of Cartesian tasks that are expressed in the global frame
does not make any sense. We tried then to assign Cartesian
tasks related to the relative positions of the feet with respect
to the hips and of the hands with respect to the shoulders
as done in [20]. However, to do so we should accurately
measure the ratio between the lengths of the limbs of the
robot and of the human, and when starting the streaming
of the data from Xsens, the 3D Xsens skeleton initial body
orientation with respect the global frame should also match
precisely the one of the robot. Furthermore, the MVN Xsens
skeleton estimation is affected by some noise that makes
the global frame drift on the ground over time. Hence for
long teleoperations the retargeting of Cartesian tasks could
be compromised because of the change of orientation of the
global frame.

For these reasons, we opted for retargeting only the joint
angles and simplifying the initialization process for the
teleoperation together with the reliability. More specifically,
we do not retarget all the joint angles but we separate
the postural task in several subtasks: headsub (neck joints),
torsosub (torso joints), lArmsub (left arm joints), rArmsub

(right arm joints).
We additionally considered a Cartesian task for the ground

position of the CoM of the robot (comsub) and a Cartesian
task for the height and orientation of the floating base
(basesub). The global position of the feet is also taken into
consideration, in order to keep each foot in contact with the
ground whenever it is a support link (lFoot and/or rFoot).
The posture of the legs is retargeted indirectly through the
CoM and floating base tasks. Our resulting selected stack of
tasks for the teleoperation is the following:

stack = (lFoot+ rFoot+ headsub)/

(comsub + basesub + torsosub + lArmsub + rArmsub);

where Ta+Tb means that the tasks Ta and Tb are in a SOFT
(Weighted) Priority relation while Ta/Tb means the tasks Ta

and Tb are in a HARD (Null-Space) Priority relation.
In single support mode, the task of the foot that is not

the support one can be removed and a leg postural task can

Fig. 4: Determination of the normalized offset from the
ground projection of the CoM pCoM,H and the feet positions
of the human.

we consider the deviation of the height of the human pelvis
�basei,H from the starting value over time

�basei,H = basei,H � basestart,H (8)

In order to follow the human motion, we expect the corre-
sponding deviation of the floating base of the robot �basei,R
to be proportional to the one of the human

�basei,H = ↵�basei,R (9)

↵ =
hbase,R

hbase,H

(10)

where ↵ is the ratio between the height of the floating base
of the robot and of the pelvis of the human when in N-pose4.
Then we can calculate the height of the robot base at each
time step as:

basei,R = basestart,R +�basei,R. (11)

We also retarget the change of orientation of the floating
base in a similar way, by computing the roll, pitch and yaw
from the quaternion information given by the motion capture
system.

D. ZMP Retargeting Correction

During whole body teleoperation of humanoid robots,
disastrous crashes may occur if the desired CoM trajectories
recorded from the human do not ensure the balance of the
controlled robot when retargeted.

To this scope, we propose a QP-based “preprocessor” that
adjusts in real-time the desired commanded CoM to satisfy
constraints that represent a condition for dynamic balance.
In order to achieve a stable CoM trajectory we employ the
linear inverted pendulum model (LIPM) in combination with
the Zero Moment Point (ZMP) criterion.

The ZMP is represented with a point on the ground plane
where the tipping moments, generated by the gravity and the
inertial forces, are equal to zero. A humanoid robot keeps its
balance if the ZMP is contained inside the support polygon
of the robot.

4N pose is a resting pose, where the human stands with lowered arms
close to its body.

Through the LIPM model it is possible to establish a
simple relation between the ZMP and the CoM dynamics:

p̈CoM =
g

h
(pCoM � pZMP ) (12)

where g represents the gravity acceleration, h is the height
of the inverted pendulum and pCoM = (xCoM , yCoM )T ,
pZMP = (xZMP , yZMP )T represent respectively the CoM
and ZMP positions of the LIPM on the horizontal plane.
By employing the equation (12) is possible to cast a QP
problem to obtain an optimal correction of the desired CoM
that satisfies the balance condition on the humanoid

min
pZMP

(ṗdes
CoM

� ṗCoM )TR (ṗdes
CoM

� ṗCoM )

s.t. ṗCoM = ṗt�1
CoM

+ Tg

ht�1 (pCoM � pZMP )
lbSP < pZMP < ubSP

(13)

where ṗdes
CoM

is the desired CoM velocity, T is the sampling
time, ṗt�1

CoM
, ht�1 are respectively the last CoM velocity and

the last CoM height measured from the robot and lbSP and
ubSP are the lower and upper bound of the support polygon
of the robot. Updating the height of the LIPM at each time
step with the actual robot CoM z position provides a better
model to estimate the ZMP position and consequently, a
more accurate correction.

V. EXPERIMENTS

We set up two experiments to validate our approach.
First, through dynamics simulations on the simulated robot
in Gazebo, we show how the ZMP retargeting correction
is essential to retarget a motion that is dynamically stable
onto the robot. Then, we tested our framework by tele-
operating the real robot iCub in real-time. Videos of our
experiments with the real robot can be seen at https://
youtu.be/CjLQu_6ifAE and https://youtu.be/
iZVAacyvYhM.

Simulated robot – We selected three kind of motions to
show the efficacy of our method: squat motion, hip roll
exaggerate motion and a grasping motion involving some
torso and leg movements (see Figure 7). Figure 5 shows
how the ZMP associated to the retargeted motion without
the correction lies outside the support polygon, making the
robot fall inevitably (that is why we show this in simulation).
This is due both to mechanical limitations of the robot,
which cannot achieve the same CoM displacement given the
retargeted joint values (that might go beyond the robot joint
limits), and to the generation of some momentum different
from the human one that makes the desired robot CoM
trajectory unstable. Hence, the ZMP trajectory is corrected
in real-time to stay inside the support polygon and the CoM
trajectory is modified accordingly (see Figure 6).

Real robot – We teleoperated the robot trying to move
all its links to show the effectiveness of our framework.
During the teleoperation the ZMP position of the robot
always lies inside the support polygon as expected (see
Figure 8). The robot joint trajectories follow the retargeted
values guaranteeing the mimicry of the human motion (see
Figure 9). Even though the legs joint angles are not taken into

Fig. 2: Teleoperation pipeline.

torque control allows a more flexible interaction with the
robot, in particular it enables direct physical interaction be-
tween the human and the robot that is teleoperated. However,
in the case of iCub, the absence of joint torque sensing2 and
saturation of force/torque sensors limit the torque control
loop, to the point that velocity control seems more appro-
priate for quasi-static movements. Moreover, the structure of
the torque controller ensures stability for complex motions at
the price of a reduced mimicry and a notable delay3. In this
paper we overcome these limits with a novel framework for
online motion retargeting with a velocity-based QP controller
that we describe in the next section.

III. FROM MOTION CAPTURE TO ROBOT MOTION

A. Motion capture
The first step for a motion retargeting technique is to

track the human pose. Recent developments in human motion
capture allow now high-fidelity and high-frequency tracking
data. Motion-capture is widely used nowadays in various
fields including physiotherapy, surveillance, computer graph-
ics and foremost in the cinema, using external cameras or
wearable sensors. For our experiments we used the Xsens
MVN system [31]. It is a wearable system consisting of 17
IMUs, providing a real-time estimation of the human posture.

Once the data is acquired from the motion capture sys-
tem, it can be mapped to feasible corresponding values for
the robot that are set as references for the multi-task QP
controller (see Fig. 2).

B. QP controller based on stack-of-tasks
We opted for a velocity-based QP controller based on

OpenSoT [32], an open-source library implementing QP
controllers based on the stack-of-tasks [33]. Nowadays, QP
controllers have become widespread thanks to their flexibility
and various formulations have been proposed in the litera-
ture, [34], [12], [35], which take into account joint velocity,
acceleration and torque control as well as contact forces. The
general form of QP-based controllers is:

min
x

|| Ax� b ||2
W

s.t. l  Cx  u (1)

where x are the controlled variables (e.g. joint velocities),
A is the Jacobian task matrix, b is the desired task to perform,

2Joint torques are estimated online with a model-based approach that
exploits the sensor readings from the force/torque sensors distributed on the
robot [30].

3These limitations can be observed in the video of the teleoperation with
the CoDyCo torque controller: https://youtu.be/-ib0n5shuxg

W is a positive definite weight matrix, C is the constraint
matrix and finally l (lower) and u (upper) are constraints.
QP controllers permit to handle various type of constraints
that, depending on the chosen formulation, may include robot
dynamics, friction cones, self-collision avoidance, joint limits
and many more (see for example [35]).

For the teleoperation this kind of controllers is appropriate
since they allow to take into account both Cartesian tasks
(body segment positions) and Joint space tasks while satis-
fying all the robot constraints. Moreover, the tasks can be
specified both in a hard and soft priority fashion.

IV. RETARGETING METHOD

The QP controller allows to define Cartesian tasks and
a postural task together with their subtasks. Since the iCub
body dimension is close to the one of a 5 years old child,
there is a great difference with the size of the human operator
wearing the xSens suit. For this reason, the direct retargeting
of Cartesian tasks that are expressed in the global frame
does not make any sense. We tried then to assign Cartesian
tasks related to the relative positions of the feet with respect
to the hips and of the hands with respect to the shoulders
as done in [20]. However, to do so we should accurately
measure the ratio between the lengths of the limbs of the
robot and of the human, and when starting the streaming
of the data from Xsens, the 3D Xsens skeleton initial body
orientation with respect the global frame should also match
precisely the one of the robot. Furthermore, the MVN Xsens
skeleton estimation is affected by some noise that makes
the global frame drift on the ground over time. Hence for
long teleoperations the retargeting of Cartesian tasks could
be compromised because of the change of orientation of the
global frame.

For these reasons, we opted for retargeting only the joint
angles and simplifying the initialization process for the
teleoperation together with the reliability. More specifically,
we do not retarget all the joint angles but we separate
the postural task in several subtasks: headsub (neck joints),
torsosub (torso joints), lArmsub (left arm joints), rArmsub

(right arm joints).
We additionally considered a Cartesian task for the ground

position of the CoM of the robot (comsub) and a Cartesian
task for the height and orientation of the floating base
(basesub). The global position of the feet is also taken into
consideration, in order to keep each foot in contact with the
ground whenever it is a support link (lFoot and/or rFoot).
The posture of the legs is retargeted indirectly through the
CoM and floating base tasks. Our resulting selected stack of
tasks for the teleoperation is the following:

stack = (lFoot+ rFoot+ headsub)/

(comsub + basesub + torsosub + lArmsub + rArmsub);

where Ta+Tb means that the tasks Ta and Tb are in a SOFT
(Weighted) Priority relation while Ta/Tb means the tasks Ta

and Tb are in a HARD (Null-Space) Priority relation.
In single support mode, the task of the foot that is not

the support one can be removed and a leg postural task can

ZMP correction

Multi-task QP controller with strict priorities
(OpenSoT)

Fig. 4: Determination of the normalized offset from the
ground projection of the CoM pCoM,H and the feet positions
of the human.

we consider the deviation of the height of the human pelvis
�basei,H from the starting value over time

�basei,H = basei,H � basestart,H (8)

In order to follow the human motion, we expect the corre-
sponding deviation of the floating base of the robot �basei,R
to be proportional to the one of the human

�basei,H = ↵�basei,R (9)

↵ =
hbase,R

hbase,H

(10)

where ↵ is the ratio between the height of the floating base
of the robot and of the pelvis of the human when in N-pose4.
Then we can calculate the height of the robot base at each
time step as:

basei,R = basestart,R +�basei,R. (11)

We also retarget the change of orientation of the floating
base in a similar way, by computing the roll, pitch and yaw
from the quaternion information given by the motion capture
system.

D. ZMP Retargeting Correction

During whole body teleoperation of humanoid robots,
disastrous crashes may occur if the desired CoM trajectories
recorded from the human do not ensure the balance of the
controlled robot when retargeted.

To this scope, we propose a QP-based “preprocessor” that
adjusts in real-time the desired commanded CoM to satisfy
constraints that represent a condition for dynamic balance.
In order to achieve a stable CoM trajectory we employ the
linear inverted pendulum model (LIPM) in combination with
the Zero Moment Point (ZMP) criterion.

The ZMP is represented with a point on the ground plane
where the tipping moments, generated by the gravity and the
inertial forces, are equal to zero. A humanoid robot keeps its
balance if the ZMP is contained inside the support polygon
of the robot.

4N pose is a resting pose, where the human stands with lowered arms
close to its body.

Through the LIPM model it is possible to establish a
simple relation between the ZMP and the CoM dynamics:

p̈CoM =
g

h
(pCoM � pZMP ) (12)

where g represents the gravity acceleration, h is the height
of the inverted pendulum and pCoM = (xCoM , yCoM )T ,
pZMP = (xZMP , yZMP )T represent respectively the CoM
and ZMP positions of the LIPM on the horizontal plane.
By employing the equation (12) is possible to cast a QP
problem to obtain an optimal correction of the desired CoM
that satisfies the balance condition on the humanoid

min
pZMP

(ṗdes
CoM

� ṗCoM )TR (ṗdes
CoM

� ṗCoM )

s.t. ṗCoM = ṗt�1
CoM

+ Tg

ht�1 (pCoM � pZMP )
lbSP < pZMP < ubSP

(13)

where ṗdes
CoM

is the desired CoM velocity, T is the sampling
time, ṗt�1

CoM
, ht�1 are respectively the last CoM velocity and

the last CoM height measured from the robot and lbSP and
ubSP are the lower and upper bound of the support polygon
of the robot. Updating the height of the LIPM at each time
step with the actual robot CoM z position provides a better
model to estimate the ZMP position and consequently, a
more accurate correction.

V. EXPERIMENTS

We set up two experiments to validate our approach.
First, through dynamics simulations on the simulated robot
in Gazebo, we show how the ZMP retargeting correction
is essential to retarget a motion that is dynamically stable
onto the robot. Then, we tested our framework by tele-
operating the real robot iCub in real-time. Videos of our
experiments with the real robot can be seen at https://
youtu.be/CjLQu_6ifAE and https://youtu.be/
iZVAacyvYhM.

Simulated robot – We selected three kind of motions to
show the efficacy of our method: squat motion, hip roll
exaggerate motion and a grasping motion involving some
torso and leg movements (see Figure 7). Figure 5 shows
how the ZMP associated to the retargeted motion without
the correction lies outside the support polygon, making the
robot fall inevitably (that is why we show this in simulation).
This is due both to mechanical limitations of the robot,
which cannot achieve the same CoM displacement given the
retargeted joint values (that might go beyond the robot joint
limits), and to the generation of some momentum different
from the human one that makes the desired robot CoM
trajectory unstable. Hence, the ZMP trajectory is corrected
in real-time to stay inside the support polygon and the CoM
trajectory is modified accordingly (see Figure 6).

Real robot – We teleoperated the robot trying to move
all its links to show the effectiveness of our framework.
During the teleoperation the ZMP position of the robot
always lies inside the support polygon as expected (see
Figure 8). The robot joint trajectories follow the retargeted
values guaranteeing the mimicry of the human motion (see
Figure 9). Even though the legs joint angles are not taken into

 1) teleoperation with a robust retargeting strategy 
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 Retargeting footsteps: not a good idea

Robot Operator

XSens 
suit

footsteps

posture

When in double support, detection of teleoperated walking
is achieved by measuring the displacement of the feet of
the human. Walking is activated if the foot is lifted and
moving forward or backward over a minimum threshold.
One footstep is counted when a foot is brought back to
the ground. For footstep retargeting, let us assume that the
feet move along the x-axis when walking; however, the
extension to a 2D foot position retargeting is straightforward.
We first measure the displacement of the human foot over
a footstep. Then, we retarget the human footstep onto the
robot, considering the range of feasible values for the human
and the robot (comprised within minimum and maximum
values xfootmin

and xfootmax
), by computing the offset

o
footstep

=
(xfootH � xfootminH

)

(xfootmaxH
� xfootminH

)
(5)

from which we get the corresponding robot footstep length

xfootR = o
footstep

(xfootmaxR
�xfootminR

)+xfootminR
(6)

The robot is then made to perform an equal number of
steps, of corresponding retargeted length, with the exception
of the last step, which is used to align the two feet. The same
approach can be applied to retarget the step height.

Differently from previous works such as [17], [19], we do
not use the teleoperation only for the activation of an off-
line walking pattern generator. Instead, we actually take into
consideration the human movements in order to achieve a
performance which is closer to the human motion, i.e. same
scale and number of footsteps. For the above reasons, the
walking of the robot is not deactivated at the instant in which
the human stops walking. Instead, we count the number of
steps to be performed.

Additionally, when the robot must perform backward or
small steps (step length < 0.04m), the waist height is
lowered by 0.01m during foot liftoff and touchdown, for
better stability.

As for defining the motion of the feet and the projection of
the CoM on the ground, this is done with the help of a finite
state machine, as described in the next subsection, in order
to adjust to double support or single support situations. In
this case, the desired CoM and feet trajectories are generated
using the minimum jerk trajectory generator of [20].

B. Finite state machine
The finite state machine defines the motions to be per-

formed by the robot, depending on the input received from
the motion capture system. It is composed of the following
five states:

1) Idle: the state in which the controller is initialized. The
robot position is kept constant, until teleoperation is started.

2) Double support: used for balancing on two feet, until
detection of walking from the teleoperation signal. The
ground projection of the CoM is set to lie in the middle
between the feet, which remain in place on the ground.

3) Walking double support: used only when walking,
the ground projection of the CoM is moved to the middle
between the feet, while the feet remain in place.

4) Walking foot liftoff: the CoM is moved above the stance
foot, while the swing foot is lifted off the ground, up and
towards the walking direction.

5) Walking foot touchdown: the swing foot is brought
back to the ground, at a desired distance from the stance
foot, while the CoM is moved back between the feet. At the
end of this state, swing and stance feet are switched.

During all states (except Idle), retargeted joint positions
are streamed in real time, defining upper-body postural tasks.

Furthermore, the stack of tasks of the motion controller
differs slightly when used in double support state and in
walking states, to account for the greater need of mobility in
the former and of stability in the latter. The next subsection
will explain this controller.

C. QP-based whole-body controller
Once feasible postural and Cartesian values are obtained

for the robot, they can be set as reference set points for
a whole-body controller. For this purpose, we designed a
multi-task, QP-based velocity controller based on the stack-
of-tasks approach [21]. The following paragraphs define the
control input, objectives and constraints, before describing
the proposed optimization problem used for obtaining the
control input which achieves the objectives.

1) Control input: Since this is a velocity controller, the
control input u is composed of joint velocities ṡ.

2) Control objectives: The proposed controller has for
objective to stabilize the following quantities, from which
a stack of tasks is defined:

– Stance foot pose stanceTB 2 SE(3)
– Swing foot pose swingTB 2 SE(3)
– CoM ground projection position pCoM 2 R2

– Waist height zwaist 2 R and orientation waistRB 2
SO(3)

– Neck orientation neckRB 2 SO(3)
– Upper-body joint positions sup 2 Rnup

where nup is the number of controlled DOF on the upper-
body postural task, which can be broken down into subtasks
on the head, torso and arms. The stance foot, swing foot,
waist and CoM tasks are defined using the finite state
machine, while the other tasks are defined by the retargeting
module. When a task is not explicitly defined in the con-
troller, it remains in its initial value.

3) Constraints: A constraint is defined on the joint limits
of the robot, in the shape s < Au < s, as well as a constraint
on joint velocities ṡ < u < ṡ. s and s are lower and upper
joint limits, ṡ and ṡ are lower and upper joint velocity limits.

4) QP formulation: The problem is formulated with soft
task priorities, each task X being assigned its own corre-
sponding weight wX 2 R: wstance, wswing , wCoM , wwaist,
wneck and wsup

. In this case, the objective function is the
weighted sum of task errors, computed in the form

EX =
���Ẋ(u)� Ẋd

���
2

(7)

where EX is used to denote the velocity error associated to
a task X , Ẋd the desired velocity associated to the task, and

When in double support, detection of teleoperated walking
is achieved by measuring the displacement of the feet of
the human. Walking is activated if the foot is lifted and
moving forward or backward over a minimum threshold.
One footstep is counted when a foot is brought back to
the ground. For footstep retargeting, let us assume that the
feet move along the x-axis when walking; however, the
extension to a 2D foot position retargeting is straightforward.
We first measure the displacement of the human foot over
a footstep. Then, we retarget the human footstep onto the
robot, considering the range of feasible values for the human
and the robot (comprised within minimum and maximum
values xfootmin

and xfootmax
), by computing the offset

o
footstep

=
(xfootH � xfootminH

)

(xfootmaxH
� xfootminH

)
(5)

from which we get the corresponding robot footstep length

xfootR = o
footstep

(xfootmaxR
�xfootminR

)+xfootminR
(6)

The robot is then made to perform an equal number of
steps, of corresponding retargeted length, with the exception
of the last step, which is used to align the two feet. The same
approach can be applied to retarget the step height.

Differently from previous works such as [17], [19], we do
not use the teleoperation only for the activation of an off-
line walking pattern generator. Instead, we actually take into
consideration the human movements in order to achieve a
performance which is closer to the human motion, i.e. same
scale and number of footsteps. For the above reasons, the
walking of the robot is not deactivated at the instant in which
the human stops walking. Instead, we count the number of
steps to be performed.

Additionally, when the robot must perform backward or
small steps (step length < 0.04m), the waist height is
lowered by 0.01m during foot liftoff and touchdown, for
better stability.

As for defining the motion of the feet and the projection of
the CoM on the ground, this is done with the help of a finite
state machine, as described in the next subsection, in order
to adjust to double support or single support situations. In
this case, the desired CoM and feet trajectories are generated
using the minimum jerk trajectory generator of [20].

B. Finite state machine
The finite state machine defines the motions to be per-

formed by the robot, depending on the input received from
the motion capture system. It is composed of the following
five states:

1) Idle: the state in which the controller is initialized. The
robot position is kept constant, until teleoperation is started.

2) Double support: used for balancing on two feet, until
detection of walking from the teleoperation signal. The
ground projection of the CoM is set to lie in the middle
between the feet, which remain in place on the ground.

3) Walking double support: used only when walking,
the ground projection of the CoM is moved to the middle
between the feet, while the feet remain in place.

4) Walking foot liftoff: the CoM is moved above the stance
foot, while the swing foot is lifted off the ground, up and
towards the walking direction.

5) Walking foot touchdown: the swing foot is brought
back to the ground, at a desired distance from the stance
foot, while the CoM is moved back between the feet. At the
end of this state, swing and stance feet are switched.

During all states (except Idle), retargeted joint positions
are streamed in real time, defining upper-body postural tasks.

Furthermore, the stack of tasks of the motion controller
differs slightly when used in double support state and in
walking states, to account for the greater need of mobility in
the former and of stability in the latter. The next subsection
will explain this controller.

C. QP-based whole-body controller
Once feasible postural and Cartesian values are obtained

for the robot, they can be set as reference set points for
a whole-body controller. For this purpose, we designed a
multi-task, QP-based velocity controller based on the stack-
of-tasks approach [21]. The following paragraphs define the
control input, objectives and constraints, before describing
the proposed optimization problem used for obtaining the
control input which achieves the objectives.

1) Control input: Since this is a velocity controller, the
control input u is composed of joint velocities ṡ.

2) Control objectives: The proposed controller has for
objective to stabilize the following quantities, from which
a stack of tasks is defined:

– Stance foot pose stanceTB 2 SE(3)
– Swing foot pose swingTB 2 SE(3)
– CoM ground projection position pCoM 2 R2

– Waist height zwaist 2 R and orientation waistRB 2
SO(3)

– Neck orientation neckRB 2 SO(3)
– Upper-body joint positions sup 2 Rnup

where nup is the number of controlled DOF on the upper-
body postural task, which can be broken down into subtasks
on the head, torso and arms. The stance foot, swing foot,
waist and CoM tasks are defined using the finite state
machine, while the other tasks are defined by the retargeting
module. When a task is not explicitly defined in the con-
troller, it remains in its initial value.

3) Constraints: A constraint is defined on the joint limits
of the robot, in the shape s < Au < s, as well as a constraint
on joint velocities ṡ < u < ṡ. s and s are lower and upper
joint limits, ṡ and ṡ are lower and upper joint velocity limits.

4) QP formulation: The problem is formulated with soft
task priorities, each task X being assigned its own corre-
sponding weight wX 2 R: wstance, wswing , wCoM , wwaist,
wneck and wsup

. In this case, the objective function is the
weighted sum of task errors, computed in the form

EX =
���Ẋ(u)� Ẋd

���
2

(7)

where EX is used to denote the velocity error associated to
a task X , Ẋd the desired velocity associated to the task, and

Ẋ(u) is the current task value computed as a function of the
control input. In the case of Cartesian tasks, Ẋ(u) = JXu,
with JX the Jacobian associated to the task. In the case of
the postural task, Ẋ(u) = u.

The control architecture can then be formulated as the
following optimization problem:

u⇤ = argmin
u

1

2

X

Xnull

wXnull
EXnull

(8a)

s. t. s < Au < s (8b)
ṡ < u < ṡ (8c)

u = argmin
u

1

2

X

X

wXEX (8d)

Where Xnull acts in the null space of X . When walking
is activated, X includes tasks on swing foot and stance
foot, while Xnull includes tasks on CoM, waist height, neck
orientation and postural tasks (head, torso and arms). On
the other hand, when the robot is in double support state, X
includes tasks on left foot, right foot and head posture, while
Xnull includes tasks on CoM, waist height and orientation,
as well as posture of torso and arms.

IV. EXPERIMENTS

This section exposes experiments performed with a human
teleoperator3 and the iCub humanoid robot [22], in order
to validate that the method described in III is capable of
generating complex whole-body motions with teleoperation
including simultaneous upper-body and lower-body motions.

Experiments involve the use of a human motion capture
system, which allows to provide real-time estimation of the
teleoperator’s posture. The Xsens MVN system [23] was
used for this purpose. It is a wearable system consisting of
17 IMUs, which considers a model of the human with 66
DoF corresponding to 22 spherical joints.

Data captured with the Xsens is then used for motion
retargeting to the robot, as described in Section III. Ex-
periments were performed with the iCub robot, using 26
DOF for whole-body control: 3 DOF for the torso, 3 for the
neck, 4 for each arm and 6 for each leg. The force/torque
sensors on the legs of the robot are used to detect forces
exchanged between the feet and the ground. In the case of
simulation experiments, they were conducted using the open-
source robot simulator Gazebo [24].

Finally, the whole-body controller described in Section
III-C is used for producing the retargeted motion on the
robot. It was developed using OpenSoT [25], [26], [21],
an open-source library for implementing QP controllers
based on a stack of tasks. Furthermore, task weights for
the controller (8) are set as the following: wstance = 1,
wswing = 2.4, wCoM = 1, wwaist = 1, wneck = 0.6,
wsup

= 0.05.
Results shown in this paper were collected from 3 different

teleoperation experiments, in which the teleoperator begins

3Please note that in our experiments the operator is a sociologist, not a
robotics expert.

Fig. 4: Experiment 1: snapshots of squatting and walking
movements taken with the human motion capture system and
the simulated robot.

in a resting pose (standing with the arms along the body),
and performs a sequence of movements:

1) Wave the left hand, perform rotation movements of the
head, lift both arms, bring arms forward, perform two
squats, bring arms down, walk four steps forward, and
wave the right arm.

2) Bring the right arm forward, perform one squat, walk
two steps forward and two steps backward while
waving the right arm.

3) Walk four steps forward, wave the right arm and bring
it back down, wave the left arm and bring it back down,
lift both arms forward, drop arms down, wave the right
arm, lift both arms forward, perform two squats, wave
the left arm, wave the right arm, open arms in cross.

They can be visualized in the video attachment of this paper.
Experiment 1 was performed on the simulated and the

real robot. The motion capture data of the Xsens can be
visualized using the MVN Animate software that generates
a 3D human reconstructed skeleton, allowing to visually
compare the movements of the teleoperator and the robot.
Snapshots of squatting, arm and walking motions, obtained
with the virtual teleoperator and the simulated iCub, are
superposed in Fig. 4; they show that the robot closely follows
the movements of the teleoperator.

Figure 5 shows the upper-body movements obtained in the
real iCub for experiment 1, starting from the beginning of the
sequence of movements, until the arms are moved forward.
The graphs show that the head, arms and torso roll follow
closely the orientation of the teleoperator, within the physical
limits of the robot.

The retargeted footstep lengths were adapted to those of
the teleoperator, as shown in Fig. 6. For example, the left
foot of the robot performs a step backward in experiment
2; the last footstep then equalizes the position of the two
feet. Moreover, the foot trajectories show to follow closely
the desired trajectories; only at foot touchdown, an impulse
can be observed in the measured feet positions, due to the
impact with the ground.

Experiment 3 was performed as live teleoperation of the
robot. Fig 7 shows snapshots of the teleoperator and robot
waving the right arm while the robot is walking, as well
as performing the final squat. The full experiment can be
visualized in the video attachment. In particular, it shows

When in double support, detection of teleoperated walking
is achieved by measuring the displacement of the feet of
the human. Walking is activated if the foot is lifted and
moving forward or backward over a minimum threshold.
One footstep is counted when a foot is brought back to
the ground. For footstep retargeting, let us assume that the
feet move along the x-axis when walking; however, the
extension to a 2D foot position retargeting is straightforward.
We first measure the displacement of the human foot over
a footstep. Then, we retarget the human footstep onto the
robot, considering the range of feasible values for the human
and the robot (comprised within minimum and maximum
values xfootmin

and xfootmax
), by computing the offset
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footstep

=
(xfootH � xfootminH

)

(xfootmaxH
� xfootminH

)
(5)

from which we get the corresponding robot footstep length

xfootR = o
footstep

(xfootmaxR
�xfootminR

)+xfootminR
(6)

The robot is then made to perform an equal number of
steps, of corresponding retargeted length, with the exception
of the last step, which is used to align the two feet. The same
approach can be applied to retarget the step height.

Differently from previous works such as [17], [19], we do
not use the teleoperation only for the activation of an off-
line walking pattern generator. Instead, we actually take into
consideration the human movements in order to achieve a
performance which is closer to the human motion, i.e. same
scale and number of footsteps. For the above reasons, the
walking of the robot is not deactivated at the instant in which
the human stops walking. Instead, we count the number of
steps to be performed.

Additionally, when the robot must perform backward or
small steps (step length < 0.04m), the waist height is
lowered by 0.01m during foot liftoff and touchdown, for
better stability.

As for defining the motion of the feet and the projection of
the CoM on the ground, this is done with the help of a finite
state machine, as described in the next subsection, in order
to adjust to double support or single support situations. In
this case, the desired CoM and feet trajectories are generated
using the minimum jerk trajectory generator of [20].

B. Finite state machine
The finite state machine defines the motions to be per-

formed by the robot, depending on the input received from
the motion capture system. It is composed of the following
five states:

1) Idle: the state in which the controller is initialized. The
robot position is kept constant, until teleoperation is started.

2) Double support: used for balancing on two feet, until
detection of walking from the teleoperation signal. The
ground projection of the CoM is set to lie in the middle
between the feet, which remain in place on the ground.

3) Walking double support: used only when walking,
the ground projection of the CoM is moved to the middle
between the feet, while the feet remain in place.

4) Walking foot liftoff: the CoM is moved above the stance
foot, while the swing foot is lifted off the ground, up and
towards the walking direction.

5) Walking foot touchdown: the swing foot is brought
back to the ground, at a desired distance from the stance
foot, while the CoM is moved back between the feet. At the
end of this state, swing and stance feet are switched.

During all states (except Idle), retargeted joint positions
are streamed in real time, defining upper-body postural tasks.

Furthermore, the stack of tasks of the motion controller
differs slightly when used in double support state and in
walking states, to account for the greater need of mobility in
the former and of stability in the latter. The next subsection
will explain this controller.

C. QP-based whole-body controller
Once feasible postural and Cartesian values are obtained

for the robot, they can be set as reference set points for
a whole-body controller. For this purpose, we designed a
multi-task, QP-based velocity controller based on the stack-
of-tasks approach [21]. The following paragraphs define the
control input, objectives and constraints, before describing
the proposed optimization problem used for obtaining the
control input which achieves the objectives.

1) Control input: Since this is a velocity controller, the
control input u is composed of joint velocities ṡ.

2) Control objectives: The proposed controller has for
objective to stabilize the following quantities, from which
a stack of tasks is defined:

– Stance foot pose stanceTB 2 SE(3)
– Swing foot pose swingTB 2 SE(3)
– CoM ground projection position pCoM 2 R2

– Waist height zwaist 2 R and orientation waistRB 2
SO(3)

– Neck orientation neckRB 2 SO(3)
– Upper-body joint positions sup 2 Rnup

where nup is the number of controlled DOF on the upper-
body postural task, which can be broken down into subtasks
on the head, torso and arms. The stance foot, swing foot,
waist and CoM tasks are defined using the finite state
machine, while the other tasks are defined by the retargeting
module. When a task is not explicitly defined in the con-
troller, it remains in its initial value.

3) Constraints: A constraint is defined on the joint limits
of the robot, in the shape s < Au < s, as well as a constraint
on joint velocities ṡ < u < ṡ. s and s are lower and upper
joint limits, ṡ and ṡ are lower and upper joint velocity limits.

4) QP formulation: The problem is formulated with soft
task priorities, each task X being assigned its own corre-
sponding weight wX 2 R: wstance, wswing , wCoM , wwaist,
wneck and wsup

. In this case, the objective function is the
weighted sum of task errors, computed in the form

EX =
���Ẋ(u)� Ẋd

���
2

(7)

where EX is used to denote the velocity error associated to
a task X , Ẋd the desired velocity associated to the task, and
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Fig. 2: Overview of the proposed method. Human motion is measured and retargeted in real-time to the robot. Depending
on whether walking is detected, a finite state machine provides CoM and feet reference trajectories. A whole-body controller
computes the control input achieving a combination of tasks from the retargeting and finite state machine.

Fig. 3: Mapping between motion capture and robot joints.
Our motion capture model, here, is the one of the XSens
MVN system.

The retargeting method used in this work does not assume
that the initial body orientations of the human operator and
robot match precisely. Also, except for the waist height, it
does not require any further human/robot ratios to be known.

In the proposed approach, upper-body joint positions are
measured and grouped into subcategories: head, torso, left
arm and right arm. As for measurements relating to the
lower-body, the ground projection of the center of mass
(CoM), the height of the waist and the position of the feet
are measured.

1) Mapping and retargeting joint angles: The motion
capture human model considered here comes from our
motion capture software (XSens MVN): it is composed of
spherical joints, most of which can easily be assigned to the
corresponding robot joints on the arms and legs. However,
unlike on a human body, the robot torso is a rigid link
controlled with 3 DOF, which makes mapping joints related
to the torso less intuitive. Therefore, an approximate mapping
is performed, considering the motion capture joints most
involved in the torso motion to be the ones placed on the
vertebrae going from the second lowest lumbar vertebra up
to the thoracic vertebra at the level of the breastbone. For

example, referring to Fig. 3, this corresponds to motion
capture joints jL4L3, jL1T12 and jT9T8. The rotation of
each DOF of the robot torso is approximated by computing
the sum of the corresponding rotations on these joints. Sanity
tests performed in simulation allowed to confirm the validity
of the mapping reported in Fig. 3.

Then, this mapping allows to retarget the variation of joint
angles with respect to the starting posture, according to

�siH = siH � s0H (1)

�siR = s0R +�siH (2)

where s is the vector of current joint positions, �s is the
vector of joint variations with respect to the initial posture,
the indices 0 and i refer to measurements at initial time and
at time i, and the subindices H and R indicate measurements
on human and robot, respectively.

2) Retargeting lower-body movements: Due to important
differences between human and robot inertial properties and
physical constraints, stable balancing and walking may not
be achieved on the robot simply by retargeting legs and CoM
movements. Therefore, in order to ensure stable walking of
the robot, as well as whole-body movements, we define CoM
and feet motions as follows.

Since the CoM of the robot is higher on the chest as
compared to a human2, retargeting vertical CoM movement
might cause the motion of the robot to differ significantly
from that of the human (e.g. bending the torso over, rather
than bending the knees). Instead, we decided to indirectly
control the height of the robot CoM through the variation
of waist height �zwaistiH

= zwaistiH
� zwaist0H

. In this
case, mapping can be achieved using the ratio of robot/human
waist height measured at a resting position (i.e. standing with
straight arms along the body).

�zwaistiR
=

zwaist0,R

zwaist0,H

�zwaistiH
(3)

The height of the robot waist at each time instant can then
be computed as:

zwaistiR
= zwaist0R

+�zwaistiR
(4)

2This is the case of our robot, iCub. The robot CoM may be in a different
location in other humanoid robots.
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We define a generic stack of tasks with multiple levels

the one of the human

�xiR
= xiR

� x0R = ↵�xiH
, (5)

where the proportion is given by the ratio between the limb
length l of the robot and of the human

↵ =
lR

lH
. (6)

To retarget the center of mass ground projection, we apply a
normalized offset reconstruction [19]. The retargeted values
are all set as task references in the controller.

V. CONTROL APPROACH

A humanoid robot is composed of a set of n+1 rigid links
connected by n joints q that represent each one DoF. The
multi-body system is considered as free-floating, i.e. none of
the links’ pose is fixed with respect to an arbitrary inertial
frame. The robot configuration can then be characterized by
the joint positions q and the pose of a link, generally the
waist, that is called floating base, described by extra 6 DoFs.
Therefore the free-floating model consists of a total of n+6
DoFs.

The Jacobian matrix Jk relates the joint velocities q̇ and
the desired velocity task ẋk, i.e. ẋk = Jkq̇. To determine
the joint parameters that achieve the desired task, the inverse
has to be found; this problem is called instantaneous Inverse
Kinematics (IK).

The IK can be formulated as a Quadratic Program (QP)
minimization problem:

q̇k = argmin kJkq̇� ẋkk2 + ✏kq̇k2
s.t. c  Cq̇  c

q̇min  q̇  q̇max

(7)

where q̇ are the n + 6 joint velocities of the robot with
the linear and angular velocity of the floating base, Jk the
Jacobian matrix of the task, ẋk the reference value for the
task, ✏ a regularization factor used to handle singularities,
q̇min and q̇max the joint velocity limits and c  Cq̇  c
are the inequality constraints.

If we consider l level of hierarchies, we can solve l QP
problems as in (7), including local equality constraints to
ensure the strict priorities between the tasks in each hierarchy
k, i.e. Jk�1q̇k�1 = Jk�1q̇, ... , J0q̇0 = J0q̇1.

We define as stack S a set of tasks T at different priority
levels

S = (w1T1 + ...+ wiTi)/
...

(wjTj + ...+ wnTm);

(8)

where Ta + Tb means that the tasks Ta and Tb are in a
soft priority relation with wa, wb being the corresponding
weights, while Ta/Tb means that the tasks are in a strict null
space relation.

1Notice that there are other ways to solve this problem with a single QP
instead of a cascade of QPs [28]. This is out of the scope of the present
work.

TABLE I: Considered Tasks and associated Symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
neck Tn com Tcom
torso Tt waist orientation Two

left arm Tla waist height Twh
right arm Tra chest Tc

left leg Tll head Th
right leg Trl left foot Tlf

right foot Trf

For each task Tk we define a velocity reference as:

ẋk = ṗd

k
+ �e; (9)

where ṗd

k
is a feed-forward velocity term and e is a Cartesian

pose error, computed as in [29], multiplied by the gain �.
In this work, we used the QP implementation based on

OpenSoT, used in[19].

VI. LEARNING THE CONTROL PARAMETERS

A. Task Selection

First, we consider a set of all the possible elementary tasks
that can be used for the whole-body control of humanoid
robots. The position of the ground projection of the center of
mass is typically taken into consideration to encode the static
balance of the robot. Other quantities can be considered for
the dynamical-balance of robotic systems, such as the Zero-
Moment Point (ZMP), even though they can often be related
to the center of mass. Since the distribution of mass of the
human operator could differ significantly from the robot, a
reference height of the waist reference is preferred to a center
of mass one (as explained in Section IV).

Cartesian tasks to control the pose of a specific link are
widely used. Humanoid robots are described by an under-
actuated dynamics with respect to an inertial reference frame.
This means that the floating base of the robot cannot be
directly controlled as the other joints. To provide more sta-
bility, a task concerning its orientation is commonly included
in the controller. As an alternative the orientation of other
links, such as the head or the chest can rather be taken into
account.

The End Effectors (EEs) of the robot can be controlled
either in the Cartesian or in the joint space. In human-to-
humanoid motion retargeting indeed, there is no substantial
difference between considering postural tasks, i.e. imitating
the human joint angles, or Cartesian tasks, i.e. imitating the
EE relative positions of the human.

In this work we identify six postural tasks associated with
a particular kinematic chain of our humanoid robot, namely:
neck, torso, left arm, right arm , left leg and right leg. The
considered Cartesian tasks instead are: the ground projection
of the center of mass (com), the orientation of the waist
(waist orientation), the height of the waist (waist height),
the orientation of the chest and of the head and the pose of
the feet (see TABLE I).

the one of the human

�xiR
= xiR

� x0R = ↵�xiH
, (5)

where the proportion is given by the ratio between the limb
length l of the robot and of the human
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. (6)

To retarget the center of mass ground projection, we apply a
normalized offset reconstruction [19]. The retargeted values
are all set as task references in the controller.

V. CONTROL APPROACH

A humanoid robot is composed of a set of n+1 rigid links
connected by n joints q that represent each one DoF. The
multi-body system is considered as free-floating, i.e. none of
the links’ pose is fixed with respect to an arbitrary inertial
frame. The robot configuration can then be characterized by
the joint positions q and the pose of a link, generally the
waist, that is called floating base, described by extra 6 DoFs.
Therefore the free-floating model consists of a total of n+6
DoFs.

The Jacobian matrix Jk relates the joint velocities q̇ and
the desired velocity task ẋk, i.e. ẋk = Jkq̇. To determine
the joint parameters that achieve the desired task, the inverse
has to be found; this problem is called instantaneous Inverse
Kinematics (IK).

The IK can be formulated as a Quadratic Program (QP)
minimization problem:

q̇k = argmin kJkq̇� ẋkk2 + ✏kq̇k2
s.t. c  Cq̇  c

q̇min  q̇  q̇max

(7)

where q̇ are the n + 6 joint velocities of the robot with
the linear and angular velocity of the floating base, Jk the
Jacobian matrix of the task, ẋk the reference value for the
task, ✏ a regularization factor used to handle singularities,
q̇min and q̇max the joint velocity limits and c  Cq̇  c
are the inequality constraints.

If we consider l level of hierarchies, we can solve l QP
problems as in (7), including local equality constraints to
ensure the strict priorities between the tasks in each hierarchy
k, i.e. Jk�1q̇k�1 = Jk�1q̇, ... , J0q̇0 = J0q̇1.

We define as stack S a set of tasks T at different priority
levels

S = (w1T1 + ...+ wiTi)/
...

(wjTj + ...+ wnTm);

(8)

where Ta + Tb means that the tasks Ta and Tb are in a
soft priority relation with wa, wb being the corresponding
weights, while Ta/Tb means that the tasks are in a strict null
space relation.

1Notice that there are other ways to solve this problem with a single QP
instead of a cascade of QPs [28]. This is out of the scope of the present
work.

TABLE I: Considered Tasks and associated Symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
neck Tn com Tcom
torso Tt waist orientation Two

left arm Tla waist height Twh
right arm Tra chest Tc

left leg Tll head Th
right leg Trl left foot Tlf

right foot Trf

For each task Tk we define a velocity reference as:

ẋk = ṗd

k
+ �e; (9)

where ṗd

k
is a feed-forward velocity term and e is a Cartesian

pose error, computed as in [29], multiplied by the gain �.
In this work, we used the QP implementation based on

OpenSoT, used in[19].

VI. LEARNING THE CONTROL PARAMETERS

A. Task Selection

First, we consider a set of all the possible elementary tasks
that can be used for the whole-body control of humanoid
robots. The position of the ground projection of the center of
mass is typically taken into consideration to encode the static
balance of the robot. Other quantities can be considered for
the dynamical-balance of robotic systems, such as the Zero-
Moment Point (ZMP), even though they can often be related
to the center of mass. Since the distribution of mass of the
human operator could differ significantly from the robot, a
reference height of the waist reference is preferred to a center
of mass one (as explained in Section IV).

Cartesian tasks to control the pose of a specific link are
widely used. Humanoid robots are described by an under-
actuated dynamics with respect to an inertial reference frame.
This means that the floating base of the robot cannot be
directly controlled as the other joints. To provide more sta-
bility, a task concerning its orientation is commonly included
in the controller. As an alternative the orientation of other
links, such as the head or the chest can rather be taken into
account.

The End Effectors (EEs) of the robot can be controlled
either in the Cartesian or in the joint space. In human-to-
humanoid motion retargeting indeed, there is no substantial
difference between considering postural tasks, i.e. imitating
the human joint angles, or Cartesian tasks, i.e. imitating the
EE relative positions of the human.

In this work we identify six postural tasks associated with
a particular kinematic chain of our humanoid robot, namely:
neck, torso, left arm, right arm , left leg and right leg. The
considered Cartesian tasks instead are: the ground projection
of the center of mass (com), the orientation of the waist
(waist orientation), the height of the waist (waist height),
the orientation of the chest and of the head and the pose of
the feet (see TABLE I).

TABLE II: Considered Tasks and associated Control param-
eters: Soft Priority Weight (SPW), Hierachy Level Selector
(HLS) and Convergence Gains (CG)

Control Parameters (28)

Task SPW (10) HLS (10) CG (8)
Tlf wf lf �feet,�feet
Trf wf lf �feet,�feet
Tcom wcom lcom �com

Two wwo lwo �waist
Twh wwh lwh �waist
Th wh lh �head
Tc wc lc �chest
Tn wn ln µposture

Tt wt lt µposture

Tla wa la µposture

Tra wa la µposture

Tll wl ll µposture

Trl wl ll µposture

Performing a weighted combination of all of them, yields:

Si = (wlfTlf + wrfTrf + wcomTcom+
+wwoTwo + wwhTwh + whTh + wcTc+

+wnTn + wtTt + wlaTla+
+wraTra + wllTll + wrlTrl).

(10)

Clearly, it does not make any sense to activate all the tasks,
since many of them may conflict or be redundant. Yet, we
want the learning algorithm to find the best selection. For the
final stack of tasks we repeat (10) at three different priority
levels. More levels could be considered but given the large
number of tasks, the null space of the third level would not
leave enough room for further tasks. The resulting stack is
then

S = (S1)/
(S2)/
(S3);

(11)

B. Control Parameters
For each task, we want to learn the associated weight

and its position in the hierarchy. A specific task Tk can
be either active in one level Si (i = 1, 2, 3) of the stack
S or completely deactivated. We use a single parameter lk

to encode the activation of that task in the hierarchy S as
follows:

8
>><

>>:

Tk ✓ S1 if (0  lk  0.25)
Tk ✓ S2 if (0.25 < lk  0.5)
Tk ✓ S3 if (0.5 < lk  0.75)
Tk deactivated if (0.75 < lk  1)

The soft priorities instead, are represented by the scalar
weights w. Since humans and humanoid robots exhibit
bilateral symmetry, we use the same value for the weights
of Tlf and Trf , Tla and Tra, Tll and Trl, respectively. The
same applies for the activation levels l (see TABLE II).

We include in the learning also the convergence gains
of the tasks. For Cartesian tasks we need to specify both
a position error gain � and an orientation error gain �.
For postural tasks a single gain µ is required. TABLE II

Fig. 3: (Red) Reference trajectories for the main joints con-
cerned with balance, and (light blue region) corresponding
actual trajectories with associated median value (blue line)
over time for the learning sequence, in the 25 runs of the
algorithm. In Section A the motion mainly consists of arm
movements, while in Section B the torso is the most solicited
and in the Section C the legs.

shows the convergence gains associated to each task. With
the chosen formulation, the control parameters are 28, all
consisting of real values ranging between 0 and 1.

C. Learning Algorithm

To learn the control parameters, we opted for the Non-
dominated Sorting Genetic Algorithm II (NSGA II) [20], one
of the most efficient stochastic multi-objective optimization
methods [30]. The fitness functions are the accumulated
tracking error in the joint space f1 and a balancing score
f2, which in this paper reduces to fall avoidance. The goal
of the algorithm is to minimize the former and maximize the

Each level is a weighted combination of all the possible tasks.

TABLE III: Considered Tasks and associated Control param-
eters: Soft Priority Weight (SPW), Hierarchy Level Selector
(HLS) and Convergence Gains (CG)

Control Parameters

Task SPW HLS CG
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Tc wc lc �chest
Tn wn ln µposture

Tt wt lt µposture

Tla wa la µposture

Tra wa la µposture

Tlla wla lla µposture

Trla wla lla µposture

Tll wl ll µposture

Trl wl ll µposture

Let us consider C1; the same reasoning applies to C2.
Performing a weighted combination of all the considered
tasks, yields:

Si = (wlfTlf + wrfTrf + wcxyTcxy+
+wwoTwo + whTh + wcTn+
+wtTt + wczTcz + whaTlh+

+whaTrh + wlaTlla + wlaTrla).

(8)

Clearly, it does not make any sense to activate all the tasks,
since some of them may be redundant. Yet, we want the
learning algorithm to find the best selection. For the final
stack of tasks we repeat (8) at three different priority levels.
More levels could be considered but given the large number
of tasks, the null space of the third level would not leave
enough room for further tasks. The resulting stack is then:

S = (S1)/
(S2)/
(S3);

(9)

B. Control Parameters
For each task, we want to learn the associated weight

and its position in the hierarchy. A specific task Tk can
be either active in one level Si (i = 1, 2, 3) of the stack
S or completely deactivated. We use a single parameter lk

to encode the activation of that task in the hierarchy S as
follows:8
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Tk ✓ S1 if (0  lk  0.25)
Tk ✓ S2 if (0.25 < lk  0.5)
Tk ✓ S3 if (0.5 < lk  0.75)
Tk deactivated if (0.75 < lk  1)

The soft priorities instead, are represented by the scalar
weights w. Since humans and humanoid robots exhibit
bilateral symmetry, we use the same value for the weights
of tasks concerning the left and right parts of the robot. The
same applies for the activation levels l (see TABLE III).

We include in the learning also the convergence gains
of the tasks. For Cartesian tasks we need to specify both

Fig. 3: Median Pareto front (thick line) and associated IQR
(colored region) computed by NSGA-II in 20 runs with a
population of 100 individuals and 300 generations for the
controllers C1 (blue) and C2 (green).

a position error gain � and an orientation error gain �.
For postural tasks a single gain µ is required. TABLE III
shows the convergence gains associated to each task. With
the chosen formulation, the control parameters all consist of
real values ranging between 0 and 1.

C. Learning Algorithm
The main features that should characterize our “generic”

controller are high-performance (good tracking of the ref-
erence motions) and robustness (reduction of the tipping
moment of the robot during the motion). These two ob-
jectives may be conflicting (e.g., when the desired motions
are particularly challenging for the robot balance) hence the
problem is naturally posed as a multi-objective optimization
problem.

Multi-objective optimization relies on the Pareto dom-
inance concept [13]: a solution x1 dominates x2 if and
only if x1 is better than x2 for all the objectives; if x2 is
better for at least one objective, then x1 and x2 are equally
interesting as they represent different trade-offs. Using this
definition, optimizing means finding the set of the non-
dominated solutions of the search space, that is, solutions
that cannot be improved with respect to one objective without
decreasing their score with respect to the other. This set
is called the “Pareto front”. Although we select a single
solution to be used on the robot, the knowledge of multiple
Pareto-optimal solutions, “helps the user to compare, choose
a trade-off solution, avoiding multiple optimization runs and
artificial fix-ups” [13].

The algorithm we opted for is the Non-dominated Sorting
Genetic Algorithm II (NSGA II) [23], one of the most
efficient stochastic multi-objective optimization methods.
The objective functions are the accumulated tracking error
f1, a fall avoidance score f2 and a measure of the ZMP
position inside the Support Polygon (SP) f3. The goal of the
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We include in the learning also the convergence gains
of the tasks. For Cartesian tasks we need to specify both
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a position error gain � and an orientation error gain �.
For postural tasks a single gain µ is required. TABLE III
shows the convergence gains associated to each task. With
the chosen formulation, the control parameters all consist of
real values ranging between 0 and 1.

C. Learning Algorithm
The main features that should characterize our “generic”

controller are high-performance (good tracking of the ref-
erence motions) and robustness (reduction of the tipping
moment of the robot during the motion). These two ob-
jectives may be conflicting (e.g., when the desired motions
are particularly challenging for the robot balance) hence the
problem is naturally posed as a multi-objective optimization
problem.

Multi-objective optimization relies on the Pareto dom-
inance concept [13]: a solution x1 dominates x2 if and
only if x1 is better than x2 for all the objectives; if x2 is
better for at least one objective, then x1 and x2 are equally
interesting as they represent different trade-offs. Using this
definition, optimizing means finding the set of the non-
dominated solutions of the search space, that is, solutions
that cannot be improved with respect to one objective without
decreasing their score with respect to the other. This set
is called the “Pareto front”. Although we select a single
solution to be used on the robot, the knowledge of multiple
Pareto-optimal solutions, “helps the user to compare, choose
a trade-off solution, avoiding multiple optimization runs and
artificial fix-ups” [13].

The algorithm we opted for is the Non-dominated Sorting
Genetic Algorithm II (NSGA II) [23], one of the most
efficient stochastic multi-objective optimization methods.
The objective functions are the accumulated tracking error
f1, a fall avoidance score f2 and a measure of the ZMP
position inside the Support Polygon (SP) f3. The goal of the
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algorithm is to minimize f1 and f3 while maximizing f2

Minimize (f1(x),�f2(x), f3(x)),

where x are the control parameters. The objective functions
are initialized at zero and change at each time step i as
follows:
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f1i = f1i�1 + (
P

k

����k

i
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f2i = f2i�1 � 0.1 if (robot fallen)
f3i = f3i�1 + xSP + ySP if (robot fallen)
f3i = f3i�1 + |xcz

i
|+ |ycz

i
| otherwise

where �k

i
and �

k

i
are respectively the reference value

and the actual value measured on the simulated robot of
task k at time step i, x

cz

i
is the distance in the frontal

direction of the ZMP from the center of the SP at time
step i, while y

cz

i
is the distance in the horizontal direction

of the ZMP from the line connecting the feet, xSP ,ySP

are the dimensions of the SP. When the controller fails
to find a solution instead, we add the following the penalties:
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f1 = f1i�1 + 0.5(I � i) if (i 6= 0)
f2 = f2i�1 � 0.5(I � i) if (i 6= 0)
f3 = f3i�1 + 0.5(I � i) if (i 6= 0)
f1 = 100000 if (i = 0)
f2 = �100000 if (i = 0)
f3 = 100000 if (i = 0)

where I is the total number of steps in the recorded sequence
and i is the time step when the solver fails. The solution of
the algorithm is a 3D Pareto front. However, our interest is in
the 2D Pareto front that originates from the selection of those
solutions with f2 = 0. This assures that the resulting Pareto-
optimal solutions are all balanced at least in simulation.
From this set we can then manually select different solutions,
finally identifying a valid trade-off between performance and
robustness on the real robot without having to re-run the
optimization.

VII. EXPERIMENTS

To generate a motion sequence to use for the optimization
of the controller, the human motion has been captured using
the Xsens MVN suit. We recorded the human while perform-
ing a 68-second sequence, consisting of a series of whole-
body movements that solicit as many body parts as possible
so to generalize well to other motions. Then we retargeted
onto the robot this motion sequence (see Section IV).

Experiments were performed with the iCub robot, using 32
DoFs for whole-body control. The whole-body controller is
developed using the control software library OpenSoT [17],
[6]. To learn the control parameters, the robot is simulated
using the open-source simulator Dart.

The parameters are learnt by means of the implementation
of NSGA-II included in Sferesv2 [24], a C++ framework
for multi-core optimization. We set a population p of 100
individuals with 300 generations g (for a total of 30100
evaluations). To provide statistically significant results, we
executed in parallel 20 runs for each case on an Intel R�

XeonTM E5-2620 with 32 cores at 2.1 GHz. The parallel
optimization takes about 15 hours2. The duration of the
optimization depends mainly on the length of the learning
sequence that has to be simulated for a number of p · g
times. We opted for a long learning sequence to find a control
configuration that can generalize well to many tasks and that
can be found by running the optimization just once.

We first focus on learning an optimal configuration for
controller C1, which considers the tasks from TABLE I,
whose references are manually designed by the human oper-
ator. In this case we can easily compare the performance of
the learned controller with respect to a hand-tuned one. The
two configurations are tested on three different sequences,
namely a squat motion (S1), a movement where the robot
has to shift completely its weight on the left foot and reach a
high position with the left hand (S2), a complex movement
where the robot has to simultaneously rotate and incline its
torso while shifting its weight on the right foot and moving
the arms (S3).

To show even more how a controller learned through our
approach does not work only for the motions from the learn-
ing sequence, but also generalizes to others, we teleoperate
the robot by using the controller C2 while performing the
following actions (see Figure 1):

• spacing the legs and picking up a box;
• pushing a ball in a box;
• opening and closing the door of a container;
• dancing;
• hitting a ball.
Among all the solutions from the Pareto front, we are

interested to those with f2 = 0 (where the robot does not fall)
(see Section VI-C). For this given value of f2, we obtain a 2D
Pareto front that represents the set of Pareto-optimal trade-
offs among tracking performance f1 and robustness f3 (see
Figure 3). We tried on the real robot different solutions from
the Pareto front starting from that associated to the lowest
tracking error. In the attached video, we show on controller
C1 with a squat motion with straight torso reference, that
these solutions are not robust enough to be transferred onto
the real robot, which falls. After trying those with robustness
score f3 = 37, f3 = 32 and f3 = 27 we found that the
solution f3 = 22 is transferable to the real robot (see attached
video).

We report here the structure of the stack of C1 that
represents the median solution, given f3 = 22:

SC1 = (wf (Tlf + Trf ) + whTh)/
(wcxyTcxy + wczTcz + wtTt+
+wwoTwo + wha(Tlh + Trh))/

(wla(Tlla + Trla));

(10)

while for C2 we have:
SC2 = (wf (Tlf + Trf ) + woTwo + wnTn)/

(wcxyTcxy + wwhTwh + wtTt + wa(Tla + Tra))/
(wcTc);

(11)

The corresponding gains and soft weights are reported

2Note that the optimization is not specific to a single trajectory and is
run only once to get a controller that can achieve many trajectories.
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so to generalize well to other motions. Then we retargeted
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2Note that the optimization is not specific to a single trajectory and is
run only once to get a controller that can achieve many trajectories.

pose is fixed with respect to an arbitrary inertial frame. The
robot configuration can then be characterized by the joint
positions q and the pose of a link, generally the waist, that
is called floating base, described by extra 6 DoFs. Therefore
the free-floating model consists of a total of n+ 6 DoFs.

The Jacobian matrix Jk relates the joint velocities q̇ to
the desired task velocities ẋk, i.e. ẋk = Jkq̇. To determine
the joint parameters that achieve the desired task, the inverse
has to be found; this problem is called instantaneous Inverse
Kinematics (IK).

B. QP controller
The IK can be formulated as a QP minimization problem:

q̇k = argmin kJkq̇ � ẋkk2 + ✏kq̇k2
s.t. c  Cq̇  c

q̇min  q̇  q̇max

(5)

where q̇ are the n + 6 joint velocities of the robot with
the linear and angular velocity of the floating base, Jk the
Jacobian matrix of the task, ẋk the reference value for the
task, ✏ a regularization factor used to handle singularities,
q̇min and q̇max the joint velocity limits and c  Cq̇  c
are the inequality constraints.

If we consider l level of hierarchies, we can solve l QP
problems as in (5), including local equality constraints to
ensure the strict priorities between the tasks in each hierarchy
k, i.e. Jk�1q̇k�1 = Jk�1q̇, ... , J0q̇0 = J0q̇1.

C. Task priorities and gains
We define as stack S a set of tasks T at different priority

levels
S = (w1T1 + ...+ wiTi)/

...
(wjTj + ...+ wnTm);

(6)

where Ta + Tb means that the tasks Ta and Tb are in a
soft priority relation with wa, wb being the corresponding
weights, while Ta/Tb means that these tasks are related
through a null space projection which sets strict priority. For
each task Tk we define a velocity reference as:

ẋk = ṗd

k
+ �e; (7)

where ṗd

k
is a feed-forward velocity term and e is a Cartesian

pose error, computed as in [22], multiplied by the conver-
gence gain �.

VI. LEARNING THE CONTROL PARAMETERS

In this work we want to learn an optimal control config-
uration that works on the real robot, for different reference
trajectories, given a distribution of tasks. To validate the solu-
tion obtained through our approach, we learn first a control
configuration (C1) that works for tasks, mainly Cartesian,
that are specified manually by the user. Then to show the
generality of the solution we learn a control configuration
(C2) that works for teleoperation, where different reference

1Notice that there are other ways to solve hierarchical problems using a
single QP instead of a cascade of QPs [21], however this goes out the scope
of the present work.

TABLE I: Considered tasks for C1 and associated symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
torso Tt com (x,y) Tcxy

left lower arm Tlla com height Tcz
right lower arm Trla waist orientation Two

neck Tn left foot pose Tlf
right foot pose Trf

left hand position Tlh
right hand position Trh

head orientation Th
TABLE II: Considered tasks for C2 and associated symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
neck Tn com (x,y) Tcxy
torso Tt waist orientation Two

left arm Tla waist height Twh
right arm Tra chest orientation Tc

left leg Tll head orientation Th
right leg Trl left foot pose Tlf

right foot pose Trf

trajectories are generated in real-time by the human operator.
Since in the latter application, the task references are large
in number and generally never stationary, the use of postural
tasks is preferable over Cartesian tasks when possible. The
specification of too many varying Cartesian tasks indeed, can
easily cause numerical ill-conditioning.

A. Task Selection
First, we consider a set of all the possible elementary tasks

that can be used for the whole-body control of humanoid
robots. The position of the ground projection of the center of
mass is typically taken into consideration to encode the static
balance of the robot. Other quantities can be considered for
the dynamical-balance of robotic systems, such as the Zero-
Moment Point (ZMP), even though they can often be related
to the center of mass. In teleoperation applications, since
the distribution of mass of the human operator could differ
significantly from the robot, a reference height of the waist
reference is preferred to a center of mass one (see Section
IV).

Cartesian tasks to control the pose of a specific link are
widely used. Humanoid robots are described by an under-
actuated dynamics with respect to an inertial reference frame.
This means that the floating base of the robot cannot be di-
rectly controlled as the other joints. To provide more stability,
a task concerning its orientation is commonly included in the
controller. Alternatively, the orientation of other links, such
as the head or the chest, can be considered.

The EEs of the robot can be controlled either in the
Cartesian or in the joint space. In human-to-humanoid mo-
tion retargeting indeed, there is no substantial difference
between considering postural tasks, i.e. imitating the human
joint angles, or Cartesian tasks, i.e. imitating the EE relative
positions of the human. If Cartesian global positions are
taken into account, then it is advisable to control also the
posture of some specific parts of the limb (in the case of the
arm for example, the elbow and the wrist joints). TABLE
I and TABLE II show the tasks that we consider for the
controller C1 and C2, respectively.

pose is fixed with respect to an arbitrary inertial frame. The
robot configuration can then be characterized by the joint
positions q and the pose of a link, generally the waist, that
is called floating base, described by extra 6 DoFs. Therefore
the free-floating model consists of a total of n+ 6 DoFs.

The Jacobian matrix Jk relates the joint velocities q̇ to
the desired task velocities ẋk, i.e. ẋk = Jkq̇. To determine
the joint parameters that achieve the desired task, the inverse
has to be found; this problem is called instantaneous Inverse
Kinematics (IK).

B. QP controller
The IK can be formulated as a QP minimization problem:

q̇k = argmin kJkq̇ � ẋkk2 + ✏kq̇k2
s.t. c  Cq̇  c

q̇min  q̇  q̇max

(5)

where q̇ are the n + 6 joint velocities of the robot with
the linear and angular velocity of the floating base, Jk the
Jacobian matrix of the task, ẋk the reference value for the
task, ✏ a regularization factor used to handle singularities,
q̇min and q̇max the joint velocity limits and c  Cq̇  c
are the inequality constraints.

If we consider l level of hierarchies, we can solve l QP
problems as in (5), including local equality constraints to
ensure the strict priorities between the tasks in each hierarchy
k, i.e. Jk�1q̇k�1 = Jk�1q̇, ... , J0q̇0 = J0q̇1.

C. Task priorities and gains
We define as stack S a set of tasks T at different priority

levels
S = (w1T1 + ...+ wiTi)/

...
(wjTj + ...+ wnTm);

(6)

where Ta + Tb means that the tasks Ta and Tb are in a
soft priority relation with wa, wb being the corresponding
weights, while Ta/Tb means that these tasks are related
through a null space projection which sets strict priority. For
each task Tk we define a velocity reference as:

ẋk = ṗd

k
+ �e; (7)

where ṗd

k
is a feed-forward velocity term and e is a Cartesian

pose error, computed as in [22], multiplied by the conver-
gence gain �.

VI. LEARNING THE CONTROL PARAMETERS

In this work we want to learn an optimal control config-
uration that works on the real robot, for different reference
trajectories, given a distribution of tasks. To validate the solu-
tion obtained through our approach, we learn first a control
configuration (C1) that works for tasks, mainly Cartesian,
that are specified manually by the user. Then to show the
generality of the solution we learn a control configuration
(C2) that works for teleoperation, where different reference

1Notice that there are other ways to solve hierarchical problems using a
single QP instead of a cascade of QPs [21], however this goes out the scope
of the present work.

TABLE I: Considered tasks for C1 and associated symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
torso Tt com (x,y) Tcxy

left lower arm Tlla com height Tcz
right lower arm Trla waist orientation Two

neck Tn left foot pose Tlf
right foot pose Trf

left hand position Tlh
right hand position Trh

head orientation Th
TABLE II: Considered tasks for C2 and associated symbols

Tasks

Joint Space Symbol Cartesian Space Symbol
neck Tn com (x,y) Tcxy
torso Tt waist orientation Two

left arm Tla waist height Twh
right arm Tra chest orientation Tc

left leg Tll head orientation Th
right leg Trl left foot pose Tlf

right foot pose Trf

trajectories are generated in real-time by the human operator.
Since in the latter application, the task references are large
in number and generally never stationary, the use of postural
tasks is preferable over Cartesian tasks when possible. The
specification of too many varying Cartesian tasks indeed, can
easily cause numerical ill-conditioning.

A. Task Selection
First, we consider a set of all the possible elementary tasks

that can be used for the whole-body control of humanoid
robots. The position of the ground projection of the center of
mass is typically taken into consideration to encode the static
balance of the robot. Other quantities can be considered for
the dynamical-balance of robotic systems, such as the Zero-
Moment Point (ZMP), even though they can often be related
to the center of mass. In teleoperation applications, since
the distribution of mass of the human operator could differ
significantly from the robot, a reference height of the waist
reference is preferred to a center of mass one (see Section
IV).

Cartesian tasks to control the pose of a specific link are
widely used. Humanoid robots are described by an under-
actuated dynamics with respect to an inertial reference frame.
This means that the floating base of the robot cannot be di-
rectly controlled as the other joints. To provide more stability,
a task concerning its orientation is commonly included in the
controller. Alternatively, the orientation of other links, such
as the head or the chest, can be considered.

The EEs of the robot can be controlled either in the
Cartesian or in the joint space. In human-to-humanoid mo-
tion retargeting indeed, there is no substantial difference
between considering postural tasks, i.e. imitating the human
joint angles, or Cartesian tasks, i.e. imitating the EE relative
positions of the human. If Cartesian global positions are
taken into account, then it is advisable to control also the
posture of some specific parts of the limb (in the case of the
arm for example, the elbow and the wrist joints). TABLE
I and TABLE II show the tasks that we consider for the
controller C1 and C2, respectively.

 2) auto-tuning the controller for teleoperation
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Figure S11. Overview of the model. (A) The multi-objective evolutionary algorithm (NSGA-II). Starting with a population of

N randomly generated individuals, an offspring population of N new individuals is generated using the best individuals of the

current population. The union of the offspring and the current population is then ranked according to the stochastic Pareto

dominance (explained in Methods, here represented by having organisms in different ranks connected by lines labeled L1, L2,

etc.) and the best N individuals form the next generation. (B) An example network model. Networks can model many different

biological processes, such as genetic regulatory networks, neural networks, metabolic networks, and protein interaction networks.

Information enters the network when it is sensed as an input pattern. Nodes, which represent components of the network (e.g.

neurons or genes), respond to such information and can activate or inhibit other components of the network to varying degrees.

The strength of interactions between two nodes is represented by the weight of the connection between them, which is a scalar

value, and whether the interaction is excitatory or inhibitory depends on whether the weight is positive or negative. In this figure

all non-zero weights are represented by an arrow. The signals entering each node are passed through a transfer function to

determine the output for that node. That output then travels through each of the node’s outgoing connections and, after being

scaled by the weight of that outgoing connection, serves as a component of the incoming signal for the node at the end of that

connection. Eventually an output pattern is produced, which for a neural network could be muscle commands or for a genetic

regulatory network could be proteins. (C) The transfer function for each node. The sum of the incoming signal (x) for a node

is multiplied by 20 before being passed through the transfer function tanh(x). Multiplying by 20 makes the transition steep and

similar to a step function. The tanh(x) function ensures that the output is in the range [�1, 1].

12

NSGA-II

TABLE II: Considered Tasks and associated Control param-
eters: Soft Priority Weight (SPW), Hierachy Level Selector
(HLS) and Convergence Gains (CG)

Control Parameters (28)

Task SPW (10) HLS (10) CG (8)
Tlf wf lf �feet,�feet
Trf wf lf �feet,�feet
Tcom wcom lcom �com

Two wwo lwo �waist
Twh wwh lwh �waist
Th wh lh �head
Tc wc lc �chest
Tn wn ln µposture

Tt wt lt µposture

Tla wa la µposture

Tra wa la µposture

Tll wl ll µposture

Trl wl ll µposture

Performing a weighted combination of all of them, yields:

Si = (wlfTlf + wrfTrf + wcomTcom+
+wwoTwo + wwhTwh + whTh + wcTc+

+wnTn + wtTt + wlaTla+
+wraTra + wllTll + wrlTrl).

(10)

Clearly, it does not make any sense to activate all the tasks,
since many of them may conflict or be redundant. Yet, we
want the learning algorithm to find the best selection. For the
final stack of tasks we repeat (10) at three different priority
levels. More levels could be considered but given the large
number of tasks, the null space of the third level would not
leave enough room for further tasks. The resulting stack is
then

S = (S1)/
(S2)/
(S3);

(11)

B. Control Parameters
For each task, we want to learn the associated weight

and its position in the hierarchy. A specific task Tk can
be either active in one level Si (i = 1, 2, 3) of the stack
S or completely deactivated. We use a single parameter lk

to encode the activation of that task in the hierarchy S as
follows:

8
>><

>>:

Tk ✓ S1 if (0  lk  0.25)
Tk ✓ S2 if (0.25 < lk  0.5)
Tk ✓ S3 if (0.5 < lk  0.75)
Tk deactivated if (0.75 < lk  1)

The soft priorities instead, are represented by the scalar
weights w. Since humans and humanoid robots exhibit
bilateral symmetry, we use the same value for the weights
of Tlf and Trf , Tla and Tra, Tll and Trl, respectively. The
same applies for the activation levels l (see TABLE II).

We include in the learning also the convergence gains
of the tasks. For Cartesian tasks we need to specify both
a position error gain � and an orientation error gain �.
For postural tasks a single gain µ is required. TABLE II

Fig. 3: (Red) Reference trajectories for the main joints con-
cerned with balance, and (light blue region) corresponding
actual trajectories with associated median value (blue line)
over time for the learning sequence, in the 25 runs of the
algorithm. In Section A the motion mainly consists of arm
movements, while in Section B the torso is the most solicited
and in the Section C the legs.

shows the convergence gains associated to each task. With
the chosen formulation, the control parameters are 28, all
consisting of real values ranging between 0 and 1.

C. Learning Algorithm

To learn the control parameters, we opted for the Non-
dominated Sorting Genetic Algorithm II (NSGA II) [20], one
of the most efficient stochastic multi-objective optimization
methods [30]. The fitness functions are the accumulated
tracking error in the joint space f1 and a balancing score
f2, which in this paper reduces to fall avoidance. The goal
of the algorithm is to minimize the former and maximize the

Priority
Weight

Level
Selector

Convergence
Gains

Minimize 
(tracking error, 

not falling)

Fig. 4: Region of the dominant solutions computed by 23
runs (out of 25) of NSGA-II with a population of 100
individuals and 300 generations.

latter

Minimize (f1(x),�f2(x)), (12)

where x are the control parameters. The fitness functions
f1, f2 are initialized at zero and change at each time step i

as follows⇢
f1i = f1i�1 + (�⇤

iR
� �iR

)
f2i = f2i�1 � 0.1 if (robot fallen)

where �iR
is the sum of the retargeted reference joints qiR

at the time step i and �⇤
iR

is the sum of the actual joint
values of the simulated robot q⇤

iR
at the time step i. When

the controller fails to find a solution instead, we add the
following the penalties

8
>><

>>:

f1 = f1i�1 + 0.5(I � i) if (i 6= 0)
f2 = f2i�1 � 0.5(I � i) if (i 6= 0)
f1 = 100000 if (i = 0)
f2 = �100000 if (i = 0)

where I is the total number of steps in the recorded sequence
and i is the time step when the solver fails. The solutions of
the multi-objective optimization problem are a set of optimal
trade-offs, also called as Pareto front. These solutions cannot
be improved with respect to one objective without decreasing
their score with respect to the other.

We recall that the problem could be reformulated as a
single objective optimization by using a weighted mixture
of the two fitness functions. However it is not advisable,
as it would require a normalization of the two scores and
the identification of proper weights for each fitness function,
introducing some additional tuning that is exactly what we
want to avoid.

VII. EXPERIMENTS

During experiments, human motion data are captured
using the Xsens Link suit [27]. We record the human while
performing different sequences of double support motions:

• A 68 second learning sequence. It has to generalize all
the possible double support movements, where the hu-
man operator tries to solicit as many joints as possible.

• Two testing sequences. Two different sequences of
double support movements that show how the learned
controller parameters do not work only for the motions
from the learning sequence, but generalize to others as
well.

The recorded motions are then retargeted onto the robot, as
described in Section IV. Experiments were performed with
the iCub robot, using 32 DoFs for whole-body control: 3
DoFs for the torso, 3 for the neck, 7 for each arm and 6
for each leg. The whole-body controller is developed using
the control software library OpenSoT [11]–[12]. To learn
the control parameters, the robot is simulated using the
open-source simulator Dart [31]. The parameters are learnt
by means of the implementation of NSGA-II included in
Sferesv2 [32], a C++ framework for multi-core evolutionary
optimization. We set a population of 100 individuals with
300 generations (for a total of 30100 evaluations). To provide
statistically significant results, 25 runs have been launched,
for each case on an Intel R� XeonTM E5-2620 with 32 cores
at 2.1 GHz.

Among all the solutions from the Pareto front, we are
interested to those with f2 = 0 (where the robot does not
fall). Only in two runs the algorithm converged to solutions
where the tracking error on the legs is high to the point
that the simulated robot does not follow the retargeted leg
movements (see Figure 3). In the other 23 runs, the solutions
in which the robot does not fall (f2 = 0) share a similar
tracking score f1 (see Figure 4) and perform well. Figure 3
shows how all the 25 learned configurations efficiently track
the upper-body references, differing significantly only in the
way they control the legs of the robot. It is reasonable since
the legs are the most involved in the balance of the robot
and it is difficult to find a configuration that allows a high
fidelity tracking of the retargeted motion of the legs while
maintaining balance. In 23 learned configurations, the leg
movements follow the retargeted motion (see median actual
trajectories in Figure 3).

We report here structure of the stack associated to the best
solution (i.e. with the lowest tracking error f1):

S⇤ = (wa(Tla + Tra) + wf (Tlf + Trf )+
+wwoTwo + wnTn)/

(wtTt + wcomTcom + wwhTwh)/
(wl(Tll + Trl) + wcTc);

(13)

The corresponding soft weights and gains are reported in
TABLE III and IV, respectively. The tables contain also the
median and the interquartile range (IQR) of those parameters
in the learned configurations.

TABLE V indicates the frequency of each task in the
different levels of the hierarchy in the 25 runs. The legs are
usually controlled at the third level of the stack. Whenever
they appear at the second level, the corresponding soft weight
is lower. Another possibility is to control them indirectly
just through the height and the orientation of the waist. The

algorithm is to minimize f1 and f3 while maximizing f2

Minimize (f1(x),�f2(x), f3(x)),

where x are the control parameters. The objective functions
are initialized at zero and change at each time step i as
follows:
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>>>:

f1i = f1i�1 + (
P

k

����k

i
� �

k

i

���)
f2i = f2i�1 � 0.1 if (robot fallen)
f3i = f3i�1 + xSP + ySP if (robot fallen)
f3i = f3i�1 + |xcz

i
|+ |ycz

i
| otherwise

where �k

i
and �

k

i
are respectively the reference value

and the actual value measured on the simulated robot of
task k at time step i, x

cz

i
is the distance in the frontal

direction of the ZMP from the center of the SP at time
step i, while y

cz

i
is the distance in the horizontal direction

of the ZMP from the line connecting the feet, xSP ,ySP

are the dimensions of the SP. When the controller fails
to find a solution instead, we add the following the penalties:
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>>>>>>:

f1 = f1i�1 + 0.5(I � i) if (i 6= 0)
f2 = f2i�1 � 0.5(I � i) if (i 6= 0)
f3 = f3i�1 + 0.5(I � i) if (i 6= 0)
f1 = 100000 if (i = 0)
f2 = �100000 if (i = 0)
f3 = 100000 if (i = 0)

where I is the total number of steps in the recorded sequence
and i is the time step when the solver fails. The solution of
the algorithm is a 3D Pareto front. However, our interest is in
the 2D Pareto front that originates from the selection of those
solutions with f2 = 0. This assures that the resulting Pareto-
optimal solutions are all balanced at least in simulation.
From this set we can then manually select different solutions,
finally identifying a valid trade-off between performance and
robustness on the real robot without having to re-run the
optimization.

VII. EXPERIMENTS

To generate a motion sequence to use for the optimization
of the controller, the human motion has been captured using
the Xsens MVN suit. We recorded the human while perform-
ing a 68-second sequence, consisting of a series of whole-
body movements that solicit as many body parts as possible
so to generalize well to other motions. Then we retargeted
onto the robot this motion sequence (see Section IV).

Experiments were performed with the iCub robot, using 32
DoFs for whole-body control. The whole-body controller is
developed using the control software library OpenSoT [17],
[6]. To learn the control parameters, the robot is simulated
using the open-source simulator Dart.

The parameters are learnt by means of the implementation
of NSGA-II included in Sferesv2 [24], a C++ framework
for multi-core optimization. We set a population p of 100
individuals with 300 generations g (for a total of 30100
evaluations). To provide statistically significant results, we
executed in parallel 20 runs for each case on an Intel R�

XeonTM E5-2620 with 32 cores at 2.1 GHz. The parallel
optimization takes about 15 hours2. The duration of the
optimization depends mainly on the length of the learning
sequence that has to be simulated for a number of p · g
times. We opted for a long learning sequence to find a control
configuration that can generalize well to many tasks and that
can be found by running the optimization just once.

We first focus on learning an optimal configuration for
controller C1, which considers the tasks from TABLE I,
whose references are manually designed by the human oper-
ator. In this case we can easily compare the performance of
the learned controller with respect to a hand-tuned one. The
two configurations are tested on three different sequences,
namely a squat motion (S1), a movement where the robot
has to shift completely its weight on the left foot and reach a
high position with the left hand (S2), a complex movement
where the robot has to simultaneously rotate and incline its
torso while shifting its weight on the right foot and moving
the arms (S3).

To show even more how a controller learned through our
approach does not work only for the motions from the learn-
ing sequence, but also generalizes to others, we teleoperate
the robot by using the controller C2 while performing the
following actions (see Figure 1):

• spacing the legs and picking up a box;
• pushing a ball in a box;
• opening and closing the door of a container;
• dancing;
• hitting a ball.
Among all the solutions from the Pareto front, we are

interested to those with f2 = 0 (where the robot does not fall)
(see Section VI-C). For this given value of f2, we obtain a 2D
Pareto front that represents the set of Pareto-optimal trade-
offs among tracking performance f1 and robustness f3 (see
Figure 3). We tried on the real robot different solutions from
the Pareto front starting from that associated to the lowest
tracking error. In the attached video, we show on controller
C1 with a squat motion with straight torso reference, that
these solutions are not robust enough to be transferred onto
the real robot, which falls. After trying those with robustness
score f3 = 37, f3 = 32 and f3 = 27 we found that the
solution f3 = 22 is transferable to the real robot (see attached
video).

We report here the structure of the stack of C1 that
represents the median solution, given f3 = 22:

SC1 = (wf (Tlf + Trf ) + whTh)/
(wcxyTcxy + wczTcz + wtTt+
+wwoTwo + wha(Tlh + Trh))/

(wla(Tlla + Trla));

(10)

while for C2 we have:
SC2 = (wf (Tlf + Trf ) + woTwo + wnTn)/

(wcxyTcxy + wwhTwh + wtTt + wa(Tla + Tra))/
(wcTc);

(11)

The corresponding gains and soft weights are reported

2Note that the optimization is not specific to a single trajectory and is
run only once to get a controller that can achieve many trajectories.

 2) auto-tuning the controller for teleoperation
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Soft Priority 
Weights

Convergence 
Gains

TABLE IV: Convergence Gains (CG) associated to the 20
learned configurations

C1 C2

CG Median IQR CG Median IQR
�hand 0.0191 0.033 �waist 0.5491 0.3791
�feet 0.0577 0.064 �feet 0.2486 0.0983
�feet 0.0051 0.0059 �feet 0.0983 0.1231
�com 0.4426 0.1664 �com 0.5911 0.1946
�waist 0.0591 0.042 �waist 0.0652 0.0472
�head 0.0796 0.0234 �head 0.2778 0.2560

µposture 0.5605 0.2145 µposture 0.5162 0.0821
�chest 0.6052 0.4009

TABLE V: Soft Priority Weights (SPW) associated to the 20
learned configurations

C1 C2

SFW Median IQR SFW Median IQR
wha 0.639 0.2131 wa 0.8406 0.296
wf 0.5357 0.1786 wf 0.5835 0.2144
wcxy 0.8368 0.1941 wcxy 0.9519 0.1984
wwo 0.8674 0.4832 wwo 0.1613 0.2337
wh 0.3343 0.3101 wh 0.5357 0.2465
wn 0.3256 0.2893 wn 0.406 0.2419
wt 0.9258 0.245 wt 0.0656 0.2138
wla 0.3599 0.3133 wl 0.1145 0.3756
wcz 0.7684 0.2191 wwh 0.1879 0.1785

wc 0.9902 0.091

in TABLE IV and V, where we report the median and
the interquartile range (IQR) of these parameters in the 20
learned configurations3. TABLE VI indicates the frequency
of each task in the different levels of the hierarchy in the 20
runs.

Let us consider the following hand-tuned controller (HT ):

SHT = (wht(Tlf + Trf ) + Tcxy + Th)/
(Tcz + Tt + (Tlh + Trh))/

((Tlla + Trla));
(12)

where the gains are all set to 0.1 except for �feet, �feet,
�com that are set to 1 as done in [14] and let us consider for
the moment wht = 1.

Figure 4 shows how the learned controller C1 outperforms
HT in the sequence S1, especially for what concerns the
height of the squat. In S2, the controller HT fails to find
a solution. By setting wht = 0.7, we can fix this failure,
and the performance is comparable to C1 in simulation (see
Figure 5). However, when transferring the result onto the
real robot, HT makes the robot fall while C1 does not, as
shown in the attached video. In S3, HT fails again to find
a solution, for both wht = 0.7, 1. Let us use then the same
structure of the stack and the same soft weights of C1 in
HT to see how the convergence gains affect the tracking
performance (see Figure 6). From the video emerges how
in this case, also the choice of the convergence gains of the
tasks is crucial for the balance of the robot. Indeed, with the
gains set manually the robot falls, while with the optimized
gains it keeps the balance.

3Note that the purpose of the 20 runs is just to provide some statistics
about the convergence of the algorithm. Only one run is sufficient.

TABLE VI: Task frequency in each level of the hierarchy
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Finally the video shows how the real robot can be tele-
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structure of the stack and the same soft weights of C1 in
HT to see how the convergence gains affect the tracking
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in this case, also the choice of the convergence gains of the
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Learning the control structure and the parameters that enable the 
robot to perform a variety of motions

Penco et al.  - under review

 2) auto-tuning the controller for teleoperation
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The best solution enables the robot to do more tasks that are not in 
its training sequences and that are shown on-line by the 

teleoperator!

 2) auto-tuning the controller for teleoperation
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 3) optimization of the demonstrated motions

How to ensure that the teleoperate 
motions are “optimal” for the robot’s 

dynamics w.r.t. the task?
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 3) optimization of the demonstrated motions
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 3) optimization of the demonstrated motions
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 3) optimization of the demonstrated motions

See Gomes’ oral presentation tomorrow in the Optimization session!
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Gomes et al., HUMANOIDS 2019
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 Transfer paradigm: from humans to robots

1) Teleoperation of locomotion and manipulation relying on a whole-
body controller for the humanoid

2) Optimize the whole-body controller’s parameters to be robust to 
unknown motions from the teleoperator

3) Re-optimize the teleoperated motions for the robot dynamics 
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2) Optimize the whole-body controller’s parameters to be robust to 
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See Gomes’ oral presentation tomorrow in the Optimization session!



Thank you!
Questions?
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